Open
Close

Сточные воды тепловых электростанций. Лекции по курсу: «Природоохранные технологии в промышленной теплоэнергетике» (2) Очистка сточных вод тепловых электростанций

Главная > Лекции

Национальный исследовательский

Томский политехнический университет

Кафедра теоретической и

промышленной теплотехники

Лекции по курсу:

«Природоохранные технологии в промышленной

теплоэнергетике»

Разработчик: к.т.н., Разва А.С.

Сточные воды предприятий теплоэнергетики и их очистка

1. Классификация сточных вод ТЭС

Эксплуатация тепловых электрических станций связана с использованием большого количества воды. Основная часть воды (более 90%) расходуется в системах охлаждения различных аппаратов: конденсаторов турбин, масло- и воздухоохладителей, движущихся механизмов и др. Сточной водой является любой поток воды, выводимый из цикла электростанции. К сточным, или сбросным, водам кроме вод систем охлаждения относятся: сбросные воды систем гидрозолоулавливания (ГЗУ), отработавшие растворы после химических промывок теплосилового оборудования или его консервации: регенерационные и шламовые воды от водоочистительных (водоподготовительных) установок: нефтезагрязненные стоки, растворы и суспензии, возникающие при обмывах наружных поверхностей нагрева, главным образом воздухоподогревателей и водяных экономайзеров котлов, сжигающих сернистый мазут. Составы перечисленных стоков различны и определяются типом ТЭС и основного оборудования, ее мощностью, видом топлива, составом исходной воды, способом водоподготовки в основном производстве и, конечно, уровнем эксплуатации. Воды после охлаждения конденсаторов турбин и воздухоохладителей несут, как правило, только так называемое тепловое загрязнение, так как их температура на 8...10 С превышает температуру воды в водоисточнике. В некоторых случаях охлаждающие воды могут вносить в природные водоемы и посторонние вещества. Это обусловлено тем, что в систему охлаждения включены также и маслоохладители, нарушение плотности которых может приводить к проникновению нефтепродуктов (масел) в охлаждающую воду. На мазутных ТЭС образуются сточные воды, содержащие мазут. Масла могут попадать в сточные воды также из главного корпуса, гаражей, открытых распредустройств, маслохозяйств. Количество вод систем охлаждения определяется в основном количеством отработавшего пара, поступающего в конденсаторы турбин. Следовательно, больше всего этих вод на конденсационных ТЭС (КЭС) и АЭС, где количество воды (т/ч), охлаждающей конденсаторы турбин, может быть найдено по формуле Q=KW где W - мощность станции, МВт; К -коэффициент, для ТЭС К = 100...150: для АЭС 150...200. На электростанциях, использующих твердое топливо, удаление значительных количеств золы и шлака выполняется обычно гидравлическим способом, что требует большого количества воды. На ТЭС мощностью 4000 МВт, работающей на Экибастузском угле, сжигается до 4000 т/ч этого топлива, при этом образуется около 1600...1700 т/ч золы. Для эвакуации этого количества со станции требуется не менее 8000 м 3 /ч воды. Поэтому основным направлением в этой области является создание оборотных систем ГЗУ, когда освободившаяся от золы и шлака осветленная вода направляется вновь на ТЭС в систему ГЗУ. Сбросные воды ГЗУ значительно загрязнены взвешенными веществами, имеют повышенную минерализацию и в большинстве случаев повышенную щелочность. Кроме того, в них могут содержаться соединения фтора, мышьяка, ртути, ванадия. Стоки после химической промывки или консервации теплосилового оборудования весьма разнообразны по своему составу вследствие обилия промывочных растворов. Для промывок применяются соляная, серная, плавиковая, сульфаминовая минеральные кислоты, а также органические кислоты: лимонная, ортофталевая, адипиновая, щавелевая, муравьиная, уксусная и др. Наряду с ними используются трилон Б, различные ингибиторы коррозии, поверхностно-активные вещества, тиомочевина, гидразин, нитриты, аммиак. В результате химических реакций в процессе промывок или консервации оборудования могут сбрасываться различные органические и неорганические кислоты, щелочи, нитраты, соли аммония, железа, меди, трилон Б, ингибиторы, гидразин, фтор, уротропин, каптакс и т. д. Такое разнообразие химических веществ требует индивидуального решения нейтрализации и захоронения токсичных отходов химических промывок. Воды от обмывки наружных поверхностей нагрева образуются только на ТЭС, использующих в качестве основного топлива сернистый мазут. Следует иметь в виду, что обезвреживание этих обмывочных растворов сопровождается получением шламов, содержащих ценные вещества - соединения ванадия и никеля. При эксплуатации водоподготовки обессоленной воды на ТЭС и АЭС возникают стоки от склада реагентов, промывок механических фильтров, удаления шламовых вод осветлителей, регенерации ионитовых фильтров. Эти воды несут значительное количество солей кальция, магния, натрия, алюминия, железа. Например, на ТЭЦ, имеющей производительность химводоочистки 2000 т/ч, сбрасывается солей до 2,5 т/ч. С предочистки (механические фильтры и осветлители) сбрасываются нетоксичные осадки - карбонат кальция, гидрооксид железа и алюминия, кремнекислота, органические вещества, глинистые частицы. И, наконец, на электростанциях, использующих в системах смазки и регулирования паровых турбин огнестойкие жидкости типа иввиоль или ОМТИ, образуется небольшое количество сточной воды, загрязненной этим веществом. Основным нормативным документом, устанавливающим систему охраны поверхностных вод, служат «Правила охраны поверхностных вод (типовое положение)» (М.: Госкомприроды, 1991г.).

2. Влияние сточных вод ТЭС на природные водоемы

Природные водоемы представляют собой сложные экологические системы (экосистемы) существования биоценоза - сообщества живых организмов (животных и растений). Эти системы создавались в течение многих тысячелетий эволюции живого мира. Водоемы являются не только сборниками и хранилищами воды, в которых вода усредняется по качеству, но в них непрерывно протекают процессы изменения состава примесей - приближение к равновесию. Оно может быть нарушено в результате человеческой деятельности, в частности сброса сточных вод ТЭС. Живые организмы (гидробионты), населяющие водоемы, тесно связаны между собой условиями жизни, и в первую очередь ресурсами питания. Гидробионты играют основную роль в процессе самоочищения водоемов. Часть гидробионтов (обычно растения) синтезируют органические вещества, используя при этом неорганические соединения из окружающей среды, такие, как СО 2 , NН 3 и др. Другие гидробионты (обычно животные) усваивают готовые органические вещества. Водоросли также минерализуют органические вещества. В процессе фотосинтеза они при этом выделяют кислород. Основная часть кислорода поступает в водоем путем аэрации при контакте воды с воздухом. Микроорганизмы (бактерии) интенсифицируют процесс минерализации органики при окислении ее кислородом. Отклонение экосистемы от равновесного состояния, вызванное, например, сбросом сточных вод, может привести к отравлению и даже гибели определенного вида (популяции) гидробионтов, которое приведет к цепной реакции угнетения всего биоценоза. Отклонение от равновесия интенсифицирует процессы, приводящие водоем в оптимальное состояние, которые называют процессами самоочищения водоема. Важнейшие из этих процессов следующие:

    осаждение грубодисперсных и коагуляция коллоидных примесей; окисление (минерализация) органических примесей; окисление минеральных примесей кислорода; нейтрализация кислот и оснований за счет буферной емкости воды водоема (щелочности), приводящая к изменению ее рН; гидролиз ионов тяжелых металлов, приводящий к образованию их малорастворимых гидроокисей и выделению их из воды; установление углекислотного равновесия (стабилизация) в воде, сопровождающееся или выделением твердой фазы (СаСО 3), или переходом части ее в воду.
Процессы самоочищения водоемов зависят от гидробиологической и гидрохимической обстановки в них. Основными факторами, существенно влияющими на водоемы, являются температура воды, минералогический состав примесей, концентрация кислорода, показатель рН воды, концентрации вредных примесей, препятствующих или затрудняющих протеканию процессов самоочищения водоемов. Для гидробионтов наиболее благоприятен показатель рН=6,5...8,5. Так как сбросы воды из систем охлаждения оборудования ТЭС несут в основном «тепловое» загрязнение следует иметь в виду, что температура оказывает мощное воздействие на биоценоз в водоеме. С одной стороны, температура оказывает прямое влияние на скорость протекания химических реакций, с другой - на скорость восстановления дефицита кислорода. При повышении температуры ускоряются процессы размножения гидробионтов. Восприимчивость живых организмов к токсичным веществам с повышением температуры обычно увеличивается. При повышении температуры до +30 °С сокращается прирост водорослей, поражается фауна, рыбы становятся малоподвижными и перестают кормиться. Кроме того, с ростом температуры уменьшается растворимость кислорода в воде. Резкий перепад температур, который возникает при сбросе в водоем нагретых вод, приводит к гибели рыбы и представляет серьезную угрозу рыбному хозяйству. Влияние сточных вод, температура которых на 6...9 С выше температуры речной воды, губительно даже для рыб, адаптированных к летней температуре до + 25 °С. Среднемесячная температура воды в расчетном створе водоема хозяйственно-питьевого и культурно-бытового водопользования летом после сброса нагретой воды не должна повышаться более чем на 3 °С по сравнению с естественной среднемесячной температурой воды на поверхности водоема или водотока для наиболее жаркого месяца года. Для рыбохозяйственных водоемов температура воды в расчетном створе летом не должна повышаться более чем на 5 °С по сравнению с естественной в месте водовыпуска. Среднемесячная температура воды наиболее жаркого месяца в расчетном створе рыбохозяйственных водоемов не должна превышать 28 °С, а для водоемов с холодноводными рыбами (лососевыми и сиговыми) не должна превышать 20 °С.

Предельно допустимые концентрации вредных веществ в водоемах Таблица 1

Для водоемов санитарно-бытового водопользования

Для рыбохозяйственных водоемов

Вещество

Класс опасности

Лимитирующий показатель вредности

Аммиак NH 3

санитарно-токсикологический

токсикологический

Ванадий V 5+
Гидразин N 2 H 4
Железо Fe 2 +

органолептический (цвет)

Медь Cu 2 +

органолептический (привкус)

Мышьяк As 2 +

санитарно-токсикологический

Никель Ni 2 +
Нитраты (по NO 2 -)
Полиакриламид
Ртуть

отсутствие

Свицец Pb 2 +
Формальдегид
Фтор F -
Сульфаты (по SO 4)

органолептический (привкус)

санитарно-токсикологический

Фенолы

органолептический (запах)

токсикологический

Нефть и нефтепродукты

органолептический (пленка)

рыбохозяйственный

Предельно допустимой концентрацией (ПДК) вредного вещества в воде водоема называется его концентрация, которая при ежедневном воздействии в течение длительного времени на организм человека не вызывает каких-либо патологических изменений и заболеваний, обнаруживаемых современными методами исследований, а также не нарушает биологического оптимума в водоеме. В табл.1 приведены ПДК некоторых веществ, характерных для энергетики. Какое же влияние оказывают на природные водоемы отдельные загрязнители, характерные для ТЭС? Нефтепродукты. Попадающие в водоемы стоки, содержащие нефтепродукты, вызывают появление у воды запаха и привкуса керосина, образование пленки или масляных пятен на ее поверхности и отложений тяжелых нефтепродуктов на дне водоемов. Пленка нефтепродуктов нарушает процесс газообмена и препятствует проникновению в воду световых лучей, загрязняет берега и прибрежную растительность. Попавшие в водоем нефтепродукты в результате биохимического окисления постепенно разлагаются на углекислоту и воду. Однако этот процесс протекает медленно и зависит от количества растворенного в воде кислорода, температуры воды и количества микроорганизмов в ней. В летнее время пленка нефтепродуктов разлагается на 50...80% в течение 5...7 дней, при температуре ниже +10 °С процесс разложения идет более длительно, а при +4 °С разложения вообще не происходит. Донные отложения нефтепродуктов удаляются еще более медленно и становятся источником вторичного загрязнения воды. Наличие в воде нефтепродуктов делает воду непригодной для питья. Особенно большой ущерб наносится рыбному хозяйству. Рыбы наиболее чувствительны к изменению химического состава воды и к попаданию в нее нефтепродуктов в эмбриональном периоде. Нефтепродукты, попадающие в водоем, приводят также к гибели планктона - важной составляющей кормовой базы рыб. От загрязнения водоемов нефтепродуктами страдают также водоплавающие птицы. В первую очередь повреждаются оперение и кожа птиц. При обильном поражении птицы погибают. Кислоты и щелочи. Кислые и щелочные воды изменяют показатель рН воды водоема в районе их сброса, Изменение рН отрицательно сказывается на флоре и фауне водоема, нарушает биохимические процессы и физиологические функции у рыб и других живых организмов. При повышении щелочности воды, т. е. рН>9,5 у рыб разрушается кожный покров, ткани плавников и жабры, водные растения угнетаются, ухудшается самоочищение водоема. При снижении показателя, т. е. рНг$5 неорганические (серная, соляная, азотная) и органические (уксусная, молочная, виннокаменная и др.) кислоты оказывают на рыб токсическое воздействие. Соединения ванадия обладают способностью накапливаться в организме. Они являются ядами с весьма разнообразным действием на организм и способны вызвать изменения в органах кровообращения, дыхания, в нервной системе: приводят к нарушению обмена веществ и аллергическим поражениям кожи. Соединения железа. Растворимые соли железа, образующиеся в результате воздействия кислоты на металл теплоэнергетического оборудования, при нейтрализации кислых растворов щелочи переходят в гидрат оксида железа, выпадающий в осадок и могущий отлагаться на жабрах рыб. Комплексы железа с лимонной кислотой отрицательно влияют на цвет и запах воды. Кроме того, соли железа обладают некоторым общим токсическим действием, а соединения трехвалентного (окисного) железа действуют обжигающе на пищеварительный тракт. Соединения никеля поражают ткань легких, вызывают функциональные нарушения центральной нервной системы, желудочные заболевания, снижение кровяного давления. Соединения меди обладают общим токсическим действием и при избыточном попадании в организм вызывают нарушения желудочно-кишечного тракта. Для рыб опасны даже незначительные концентрации меди. Нитриты и нитраты. Воды, содержащие нитриты и нитраты в количествах, превышающих предельно допустимые. не могут быть использованы для питьевого водоснабжения. При их употреблении наблюдались случаи тяжелой метгемоглобинемии. Кроме того, нитраты неблагоприятно воздействуют на высших беспозвоночных и рыб. Аммиак и соли аммония тормозят биологические процессы в водоемах и высокотоксичны для рыб. Кроме того, аммониевые соли в результате биохимических процессов окисляются до нитратов. Трилон Б. Растворы трилона Б токсичны для микроорганизмов, в том числе и для тех, которые участвуют в процессах биохимической очистки. Комплексы трилона Б с солями жесткости обладают значительно меньшей токсичностью, однако комплексы его с солями железа окрашивают воду водоема и придают ей неприятный запах. Ингибиторы ОП-7, ОП-10 придают запах воде и специфический привкус рыбе. Поэтому для водных объектов, используемых для рыбохозяйственных целей, лимитирующим показателем вредности ингибиторов ОП-7 и ОП-10 является токсикологический показатель, а для водных объектов хозяйственно-питьевого и культурно-бытового водопользования - органолептический (вкус, запах). Гидразин, соединения фтора, мышьяка, ртути ядовиты как для человека, так и для фауны водоемов. Однако в воде, используемой для питьевых целей, должна быть определенная концентрация фтор-ионов (приблизительно 1,0-1,5 мг/л). Как меньшие, так и большие концентрации фтора вредны для человеческого организма. Повышенное солесодержание сточных вод, даже обусловленное наличием нейтральных солей, близких по составу к солям, содержащимся в обычных водах водоемов, может оказать отрицательное влияние на флору и фауну водоемов. Шлам , находящийся в сбросных водах предочисток водоподготовительных установок, содержит органические вещества. Попадая в водоем, он способствует снижению содержания кислорода в воде из-за окисления этих органических веществ, что может привести к нарушению процессов самоочищения водоема, а в зимнее время к развитию замора рыбы. Содержащиеся в шламе хлопья оксидов железа и избыток извести поражают слизистую жабр у рыбы, приводя ее к гибели. Снижение отрицательного влияния ТЭС на водоемы осуществляется следующими основными путями: очисткой сточных вод перед их сбросом в водоемы, организацией необходимого контроля; уменьшением количества сточных вод вплоть до создания бессточных электростанций; использованием сточных вод в цикле ТЭС; усовершенствованием технологии самой ТЭС. В табл.2 представлен примерный усредненный состав стоков исходя из полученных данных химического анализа проб, взятых из бассейнов-отстойников некоторых электростанций. Вещества эти по своему влиянию на санитарный режим водоемов могут быть разделены на три группы. Примерный состав стоков в бассейне-отстойнике до очистки,

при различных методах химических промывок, мг/л Таблица 2

Компоненты

Соляно-кислотный

Комплексный

Аддитиново-кислотный

Фталевокислотный

Гидразино-кислотный

Дикарбокислотный

Хлориды Cl -
Сульфаты SO 4
Железо Fe 2 + , Fe 3 +
Медь Cu 2 +
Цинк Zn 2 +
Фтор F -
ОП-7, ОП-10
ПБ-5, В-1, В-2
Каптакс
Формальдегид
Аммонийные соединения NH 4 +
Нитриты NO 2 -
Гидразин N 2 H 4
Солесодержание
К первой должны быть отнесены неорганические вещества, содержание которых в данных растворах близко к значениям ПДК. Ими являются сульфаты и хлориды кальция, натрия, магния. Сброс в водоем сточных вод, содержащих эти вещества, будет лишь несколько повышать солесодержание воды. Вторую группу составляют вещества, содержание которых значительно превышает ПДК; к ним необходимо отнести соли металлов (железа, меди, цинка), фторсодержащие соединения, гидразин, мышьяк. Эти вещества не могут быть пока биологически переработаны в безвредные продукты. Третья группа объединяет все органические вещества, а также аммонийные соли, нитриты, сульфиды. Общим для веществ этой группы является то, что все они могут быть окислены до безвредных или менее вредных продуктов: воды, углекислоты, нитратов, сульфатов, фосфатов, поглощая при этом из воды растворенный кислород. Скорость этого окисления для разных веществ различна.

3. Обработка сбросных вод водоподготовительных установок

Методы очистки сточных вод подразделяются на механические (физические), физико-химические, химические и биохимические. Непосредственное выделение примесей из сточных вод может быть осуществлено следующими путями (механические и физико-химические методы):

    механическое удаление крупных примесей (на решетках, сетках); микропроцеживание (мелкие сетки); отстаивание и осветление; применение гидроциклонов; центрифугирование; фильтрование; флотация; электрофорез; мембранные методы (обратный осмос, электродиализ).
Выделение примесей с изменением фазового состояния воды или примеси (физико-химические методы):
    примесь - газовая фаза, вода-жидкая фаза (дегазация или отгонка с паром); примесь - жидкая или твердая фаза, вода - жидкая фаза (выпаривание); примесь и вода - две жидкие не смешивающиеся фазы (экстракция и коалесценция); примесь - твердая фаза, вода - твердая фаза (вымораживание); примесь - твердая фаза, вода - жидкая фаза (кристаллизация, сорбция, коагуляция).
Методы очистки сточных вод путем превращения примесей с изменением их химического состава (химические и физикохимические методы) разделяются по характеру процессов на следующие группы:
    образование труднорастворимых соединений (известкование и др.); синтез и разложение (разложение комплексов тяжелых металлов при вводе щелочей и др.); окислительно-восстановительные процессы (окисление органических и неорганических соединений сильными окислителями и др.); термическая переработка (аппараты с погружными горелками, сжигание кубовых остатков и др.).
Наибольшее практическое значение при очистке сточных вод ТЭС имеют методы: отстаивание, флотация, фильтрование, коагуляция и сорбция, известкование, разложение и окисление веществ. В зависимости от качества исходной воды и требований к качеству добавочной воды котлов применяются различные варианты схем водоподготовительных установок. В общем виде они включают в себя предочистку воды и ионный обмен. Непосредственный сброс сточных водоподготовительных установок в водоемы недопустим из-за резкопеременных значений рН, выходящих за пределы 6,5-8,5, оптимальных для водоемов, а также высокой концентрации в них грубодисперсных примесей и солей. Удаление грубодисперсных примесей и регулирование рН не представляют проблемы. Наиболее сложной задачей является снижение концентрации истинно-растворенных примесей (солей). Ионообменный метод здесь непригоден, так как приводит к возрастанию количества сбрасываемых солей. Более предпочтительны безреагентные методы (выпаривание, обратный осмос) или с ограниченным применением реагентов (электродиализ). Но и в этих случаях обработка воды на водоподготовительных установках производится дважды. Поэтому главной задачей при проектировании и эксплуатации водоподготовки ТЭС следует считать уменьшение сброса сточных вод. В соответствии с условиями сброса сточных вод технология их очистки состоит обычно из трех этапов:
    сброса всех отработавших растворов и отмывочных вод в усреднитель; выделение из жидкости токсичных веществ второй группы с последующим обезвоживанием получающегося осадка; очистка от веществ третьей группы.
Продувочная вода осветлителей обрабатывается и повторно используется после осветления ее на шламоотвале, или в специальных отстойниках, или на фильтр-прессах, или барабанно-вакуумных фильтрах с возвратом воды во всех случаях в баки повторного использования промывочных вод механических фильтров. Шлам из отстойников периодического действия направляется на шламоотвал с использованием для этой цели нейтрализованных регенерационных вод ионитовых фильтров. Обезвоженный шлам, полученный на фильтр-прессе, необходимо вывозить в места захоронения, имеющие надежную защиту от попадания вредных веществ в окружающую среду. Схема установки для обезвоживания шлама предочистки на одной из ТЭС представлена на рис1.

Рис.1. Принципиальная схема установки для обезвоживания шлама продувки осветлителей:

1 - подвод шлама; 2 - осветленная вода на ВПУ; 3 - техническая вода; 4 - воздух; 5 - обезвоженный шлам; 6 - барабанно-вакуумный фильтр; 7 - воздуходувка; 8 - вакуум-насос; 9 - ресивер; 10 - бак постоянного уровня; 12 - насос; 12 - емкость; 13 - бункер для обезвоженного шлама Продувочная вода из осветлителя направляется в сборную емкость. Для предупреждения осаждения шлама в этой емкости через продувочную воду барботируется воздух, затем вода перекачивается в бак постоянного уровня и поступает в вакуумный фильтр, в котором происходит отделение шлама. Обезвоженный шлам сбрасывается в бункер и затем направляется на шламоотвал. Вода после отделения шлама возвращается на водоподготовительную установку.

Рис.2. Схемы самонейтрализации (а ) и нейтрализации (б ) известью сточных вод водоподготовительных установок:

1-Н-катионитный фильтр; 2-анионитный фильтр; 3-известковая мешалка; 4-насос известковой мешалки; 5-насос-дозатор известкового молока; 6-приямок сбора регенерадионных вод; 7-перекачивающий насос; 8-бак-нейтрализатор; 9-насос перекачивания и сброса; 10-охлаждающая вода после конденсаторов турбин или водоисточник Продувка осветлителей может направляться также в систему ГЗУ или на нейтрализацию кислых стоков (при рН>9). Вода от промывки механических фильтров при наличии предочистки направляется либо в линию исходной воды (при коагуляции), либо в нижнюю часть каждого осветлителя (при известковании). Для обеспечения постоянного расхода эта вода предварительно собирается в бак регенерации промывочных вод механических фильтров. При отсутствии предочистки вода от промывки механических фильтров может либо обрабатываться отстаиванием в специальном отстойнике с возвратом осветленной воды в линию исходной воды и удалением отстоявшегося шлама на шламоотвал, либо использоваться в системе ГЗУ, либо направляться в систему сбора регенерационных вод ионитовых фильтров. Сточные воды ионообменной части водоподготовительной установки, если не считать некоторого количества грубодиперсных примесей, поступающих при взрыхлении фильтров, представляют собой истинные растворы солей. В зависимости от местных условий эти воды направляются: в водоемы с соблюдением санитарно-гигиенических и рыбохозяйственных требований; в системы гидрозолоудаления; в пруды-испарители при благоприятных климатических условиях; на выпарные установки; в подземные водоносные горизонты. Сброс сточных вод в водоем возможен при соблюдении определенных условий. Так, при кислых сточных водах необходимо выполнение следующего неравенства:

;

А при щелочных

,

Где а - коэффициент смешения на участке между выпуском сточных вод и расчетным створом ближайшего пункта водопользования; Q - расчетный расход водоема, равный для незарегулированных рек наибольшему среднемесячному расходу воды 95%-ной обеспеченности; Щ - изменение щелочности воды, которое вызовет изменение рН исходной воды до предельно допустимого значения, мг-экв/кг; Q CЩ и Q СК - суточные сбросы щелочи и кислоты в сточных водах соответственно, г-экв. Сбросы кислоты и щелочи определяются по следующим выражениям:

;

,

Где G Щ и G К - суточные расходы щелочи и кислоты соответственно, кг; q Щ и q К - удельные расходы щелочи и кислоты при регенерации, г-экв/г-экв. Величина Щ определяется по формуле

,

Где Щ 0 - щелочность исходной воды водоема, мг-экв/кг; рН Д - допустимый показатель рН воды после смешения сточной воды с водой водоисточника (6,5 и 8,5); рН=рН Д -рН 0 - величина, на которую допустимо изменять показатель рН воды водоисточника; рН 0 - показатель рН воды при температуре водоема;  - ионная сила воды в водоеме; К 1 - константа первой ступени диссоциации Н 2 СО 3 при температуре воды в водоеме. Если сброс сточных вод в водоем нарушает эти условия, то необходимо применять предварительную нейтрализацию. В большинстве случаев сточные воды ионообменной части водоподготовительных установок после смешения сбросов регенеративных вод от катионитов и анионитных фильтров имеют кислую реакцию. Для нейтрализации применяют щелочные реагенты, как доломит, различные щелочи, но чаще всего известь.

Рис.3. Схема нейтрализации щелочных регенерационных вод дымовыми газами:

1 - Н-катионитный фильтр; 2 - анионитный фильтр; 3 - приямок сбора регенерационныхвод; 4 - перекачивающий насос; 5 - бак нейтрализации; 6 - распределительная труба; 7 - насос перемешивания и сброса; 8 - эжектор; 9 - дымовые газы, очищенные от золы; 10 - охлаждающая вода после конденсаторов турбин Нейтрализация известью не вызывает столь резкого повышения солесодержания воды, как при использовании других реагентов. Происходит это по той причине, что при нейтрализации известью образуется осадок, который затем выводится из воды. Положительный опыт получен также при нейтрализации сточных вод аммиачной водой. Суточный расход реагентов, необходимых для нейтрализации кислых вод, можно записать как Q СР =Q СК -Q СЩ , а щелочных - как Q СР =Q СЩ -Q СК .

При нейтрализации известью суточный расход 100%-ного СаО составляет Q СаО =28Q СР 10 -3 .

На рис.2 приведены схемы нейтрализации кислых сточных вод. Если после смешения регенерационных сбросов вода имеет щелочной характер, то ее нейтрализацию можно проводить дымовыми газами за счет растворения СО 2 , SО 3 , NО 2 . Необходимый объем дымовых газов V для нейтрализации суточного объема щелочных сточных вод определяется по формуле

Где V Г - полный объем дымовых газов, образующихся при сжигании топлива, после золоуловителя, м 3 /кг или м 3 /м 3 ; V SO2 ; V CO2 и V NO2 - объемы соответствующих газов, образующихся при сжигании топлива, м 3 /кг или м 3 /м 3 . На рис.3 приведена схема нейтрализации сточных вод водоподготовительных установок дымовыми газами с использованием барботажного способа растворения газа в воде. Для тех же целей применяются и выпарные установки для концентрирования и глубокого упаривания сточных вод (Ферганская ТЭЦ, Казанская ТЭЦ-3). Концентрат подается на установку переработки концентрированных стоков. Установка представляет аппарат с погружными горелками (рис.4), где упаривание производится до получения кристаллической соли, которая складируется в нефильтруемом хранилище.

4. Очистка сточных вод, содержащих нефтепродукты


Рис.4. Аппарат погружного горения для выпаривания сточных вод :

1 - погружная горелка; 2 - аппарат; 3 - вентилятор; 4 - бак; 5 - регулятор уровня


Для очистки сточных вод от нефтепродуктов применяются методы отстаивания, флотации и фильтрования. Метод отстаивания основан на способности самопроизвольного разделения воды и нефтепродуктов. Частицы нефтепродуктов под действием сил поверхностного натяжения приобретают сферическую форму, и их размеры находятся в диапазоне от 2 до 310 2 мкм. Величина, обратная размеру частицы, называется степенью дисперсности. В основе процесса отстаивания лежит принцип выделения нефтепродуктов под действием разности плотностей воды и частиц масла. Содержание нефтепродуктов в стоках находится в широких пределах и составляет в среднем 100 мг/л. Отстаивание нефтепродуктов производится в нефтеловушках (рис.5). Вода подается в приемную камеру и, пройдя под перегородкой, попадает в отстойную камеру, где и происходит процесс разделения воды и нефтепродуктов. Очищенная вода, пройдя под второй перегородкой, выводится из нефтеловушки, а нефтепродукты образуют пленку на поверхности воды и удаляются специальным устройством. При выборе нефтеловушки необходимо принимать следующие допущения: скорость движения воды во всех точках поперечного сечения одинакова; поток воды имеет ламинарный характер; скорость всплывания частиц нефтепродуктов постоянна в течение всего времени прохождения потока.

Рис.5. Схема типовой нефтеловушки :

1-сточная вода; 2- приемная камера; 3-отстойная зона: 4-очищенная вода; 5- вертикальные полупогруженные перегородки; 6-нефтесборные трубы; 7-пленка всплы-вших нефтепродуктов Значительное влияние на эффективность работы нефтеловушки оказывает температура воды. Увеличение температуры воды приводит к снижению ее вязкости, что способствует улучшению условий выделения частиц. Например, мазут при температуре воды ниже 30 С оседает в нефгеловушке, в интервале 30...40 °С частицы мазута находятся во взвешенном состоянии и лишь свыше 40 °С проявляется эффект всплытия частиц.

Рис.6. Нефтеловушка Гипроспецпромстроя со скребковым механизмом:

1 - приемная камера; 2 - перегородка; 3 - отстойная зона; 4 - перегородка; 5 - выпускная камера; 6 - переливной лоток; 7 - скребок; 8 - поворотные щелевые трубы; 9 - приямок; 10 - гидроэлеватор
На рис.6 представлена нефтеловушка Гидроспецпромстроя. Нефтепродукты, всплывающие на поверхность в отстойных камерах, сгоняют скребковым устройством к щелевым поворотным трубам, расположенным в начале и конце отстойных зон каждой секции, через которые они выводятся из нефтеловушки. При наличии тонущих примесей в сточной воде они выпадают на дно нефтеловушки, сгребаются тем же скребковым транспортером в приямок и при помощи данного клапана (или гидроэлеватора) выводятся из нефтеловушки. Нефтеловушки такого типа рассчитаны на производительность 15...220 кг/с по сточной воде.

Рис. 5.7. Схема установки для напорной флотации:

1-вход воды; 2-приемный резервуар; 3-всасывающая труба; 4-воздухопровод; 5-насос; 6-флотационная камера; 7-пеносборник; 8-отвод очищенной воды; 9-напорная емкость Флотационный метод очистки воды заключается в образовании комплексов частица нефтепродуктов - пузырек воздуха с последующим выделением этих комплексов из воды. Скорость всплывания таких комплексов в 10 2 ...10 3 раз превышает скорость всплывания частиц нефтепродуктов. По этой причине флотация гораздо эффективнее отстаивания.

Рис.8. Схема установки для безнапорной флотации:

1-вход воды; 2-приемный резервуар; 3-всасывающая труба; 4-воздухопровод; 5-насос; 6-флотационная камера; 7-пеносборник; 8-отвод очищенной воды Различают напорную флотацию, при которой пузырьки воздуха выделяются из пересыщенного раствора его в воде, и безнапорную, которая осуществляется при помощи пузырьков воздуха, вводимых в воду специальными устройствами. При напорной флотации (рис.7) воздух растворяется в воде под избыточным давлением до 0,5 МПа, для чего в трубопровод перед насосом подается воздух, а затем водовоздушная смесь в течение 8-10 мин выдерживается в специальной напорной емкости, откуда и подается во флотатор, где происходят сброс давления, образование пузырьков воздуха и собственно флотационный процесс разделения воды и примеси. При снижении давления на входе воды во флотатор воздух, растворенный в воде, выделяется практически мгновенно, образуя пузырьки. При безнапорной флотации (рис.8) образование пузырьков происходит за счет механических (насосом, эжектором) или электрических сил и во флотатор вводится готовая дисперсная система пузырьки -вода. Оптимальные размеры пузырьков равны 15-30 мкм. Скорость всплывания пузырьков такого размера с захваченными частицами нефти составляет в среднем 0,9...10 -3 м/с, что в 900 раз превышает скорость всплывания частицы нефти размером 1,5 мкм. Фильтрование замазученных и замасленных вод осуществляется на заключительной стадии очистки. Процесс фильтрования основан на прилипании эмульгированных частиц нефтепродуктов к поверхности зерен фильтрующего материала. Так как фильтрованию предшествует предварительная очистка сточных вод (отстаивание, флотация), перед фильтрами концентрация нефтепродуктов невысока и составляет 10 -4 ...10 -6 в объемных долях. При фильтровании сточных вод частицы нефтепродуктов выделяются из потока воды на поверхности зерен фильтрующего материала и заполняют наиболее узкие поровые каналы. При гидрофобной поверхности (не взаимодействующей с водой) частицы хорошо прилипают к зернам, при гидрофильной (взаимодействующей с водой) прилипание затруднено из-за наличия гидратной оболочки на поверхности зерен. Однако прилипающие частицы вытесняют гидратную оболочку и начиная с какого-то момента времени фильтрующий материал работает как гидрофобный. Рис.9. Изменение концентрации мазута в конденсате во время пропаривания фильтра при регенерации фильтрующего материала При работе фильтра частицы нефтепродуктов постепенно заполняют объем пор и насыщают фильтрующий материал. В итоге по истечении некоторого времени устанавливается равновесие между количеством масла, выделяющегося из потока на стенки, и количеством масла, стекающего в виде пленки в следующие по ходу потока слои фильтрующего материала. С течением времени насыщенность нефтепродуктами сдвигается к нижней границе фильтрующего слоя и концентрациямасла в фильтрате увеличивается. В этом случае фильтр отключается на регенерацию. Повышение температуры воды способствует уменьшению вязкости нефтепродуктов и, следовательно, более равномерному его распределению по высоте слоя. Традиционными материалами для загрузки фильтров являются кварцевый песок и антрацит. Иногда применяют сульфоуголь, отработанный в Nа-катионитовый фильтр. В последнее время применяют доменный и мартеновский шлак, керамзит, диатомит. Специально для этих целей ЭНИН им. Г. М. Кржижановского разработал технологию получения полукокса из канско-ачинских углей.

Рис.10. Технологическая схема очистки сточных вод, содержащих нефтепродукты:

1-приемный бак: 2-нефтеловушка; 3-промежуточные баки; 4-флотатор; 5-напорная емкость; 6-эжектор; 7-мазутоприемник; 8-механический фильтр; 9-угольныий фильтр; 10-бак промывочной воды: 11-ресивер; 12-компрессор; 13-насосы: 14-раствор коагулянта Регенерацию фильтра следует производить водяным паром давлением 0,03...0,04 МПа через верхнее распределительное устройство. Пар разогревает уловленные нефтепродукты, и они под давлением вытесняются из слоя. Длительность регенерации обычно не превышает 3 ч. Вытеснение масла из фильтра сопровождается сначала ростом его концентрации в конденсате, а затем ее уменьшением (рис.9). Конденсат сбрасывается в баки перед нефтеловушкой или флотатором. Эффективность очистки сточных вод в насыпных фильтрах от нефтепродуктов составляет около 80%. Содержание нефтепродуктов составляет 2...4 мг/кг, что значительно превышает ПДК. Вода с таким качеством может направляться для технологических целей ТЭС. В ряде случаев этот фильтрат необходимо доочистить на сорбционных (загруженных активированным углем) или намывных фильтрах. Полная типовая схема очистки сточных вод от нефтепродуктов показана на рис.10. Сточные воды собираются в буферные усреднительные баки, в которых происходит выделение части наиболее крупных грубодисперсных. примесей и частиц нефтепродуктов. Сточная вода, частично освобожденная от примесей, направляется в нефтеловушку. Затем вода поступает в промежуточный бак и оттуда насосом подается на флотатор. Выделенные нефтепродукты направляются в мазутоприемник, затем подогреваются паром для снижения вязкости и эвакуируются из установки для сжигания. Частично очищенная вода направляется во второй промежуточный бак и подается из него на фильтровальную установку, состоящую из двух ступеней. Первая ступень представляет собой фильтр с двухслойной загрузкой из кварцевого песка и антрацита. Вторая ступень состоит из сорбционного фильтра. загруженного активированным углем. Степень очистки воды по этой схеме составляет около 95%.

5. Очистка обмывочных вод поверхностей нагрева котлов

Обмывочные воды регенеративных воздухоподогревателей (РВП) представляют собой кислые растворы (рН= 1,3...3), содержащие грубодисперсные примеси: оксиды железа, кремнекислоту, продукты недожога, нерастворившуюся часть золы, свободную серную кислоту, сульфаты тяжелых металлов, соединения ванадия, никеля, меди и др. В среднем обмывочная вода содержит, г/л: свободную кислоту (в пересчете на Н 2 SО 4) 4...5, железо 7...8, никель0,1...0,15, ванадий 0,3...0,8, медь 0,02...0,05, взвешенные вещества 0,5, сухой остаток 32...45. Сточные воды от обмывок РВП и конвективных поверхностей нагрева котлов обезвреживаются нейтрализацией их щелочами. При этом ионы тяжелых металлов осаждаются в шлам в виде соответствующих гидрооксидов. Так как обмывочные воды мазутных котлов содержат ванадий, шлам, образующийся при их нейтрализации, является ценным сырьем для металлургической промышленности. Поэтому процесс нейтрализации и очистки обмывочных вод организуется так. чтобы конечными продуктами являлись обезвреженная осветленная вода и обезвоженный ванадиевый шлам, который направляется на металлургические заводы. Нейтрализация обмывочных вод производится в одну или две стадии. При нейтрализации в одну стадию сточные воды обрабатываются известковым молоком до рН=9,5...10 и выпадения всех токсичных компонентов в осадок. На рис.11 показан разработанный ВТИ и Теплоэлектропроектом и внедренный на Киевской ТЭЦ-5 вариант схемы нейтрализации и обезвреживания обмывочных вод РВП. В этой схеме обмывочные воды подаются в бак-нейтрализатор, в который также дозируется и раствор извести. Раствор перемешивается насосами рециркуляции и сжатым воздухом, затем отстаивается в течение 7...8 ч, после чего часть осветленной воды (50-60%) используется повторно на обмывку котлов, а шлам подается для обезвоживания на фильтр-прессы типа ФПАКМ. Шлам шнековым транспортером отправляется на расфасовку и на склад. Производительность фильтр-пресса 70 кг/(м 2 ч). Фильтрат из фильтр-пресса поступает на катионитный фильтр для улавливания остатков катионов тяжелых металлов. Фильтрат катионитных фильтров сбрасывается в водоем.

Рис.11. Схема установки для обезвреживания и нейтрализации обмывочных вод котлов и РВП:

1-обмывочная вода; 2-бак-нейтрализатор; 3-насос; 4-фильтр-пресс; 5-техническая вода на промывку фильтровальной ткани; шнековый транспортер; 7-машина для зашивания мешков; 8-погрузчик; 9-бак-сборник; 10-насос фильтрата; 11-насос раствора соли; 12-бак-мерник раствора соли; 13-фильтрат; 14-регенерационный раствор; /5-катионитный фильтр; 16-известковое молоко; 17-мешалка; 18-насос; 19-осветленная вода на повторное использование; 20-сжатый воздух Регенерация фильтра производится раствором NаСl, регенерационные воды сбрасываются в бак-нейтрализатор. Вода обезвреживается, однако получаемый шлам обогащен оксидами железа, сернокислым кальцием и беден соединениями ванадия (пентаоксида ванадия менее 3...5%). Челябинским научно-исследовательским институтом металлургии (ЧНИИМ) совместно с Киевской ТЭЦ-5 разработан метод повышения содержания ванадия в осадке. При одностадийной нейтрализации в качестве реагента-осадителя используют смесь, содержащую гидрооксид железа Fе(ОH) 2 , кальция Са(ОН) 2 , магния Мg(ОН) 2 и силикат-ион SiO 3 2 - . Процесс осаждения производится при рН=3,4...4,2. Для повышения концентрации соединения ванадия в шламе процесс осаждения можно организовать в две стадии. На первой стадии производится обработка щелочью (NаОН) до рН=4,5-4,0, при котором происходит осаждение Fе(ОН) 3 и основной массы ванадия, а на второй стадии процесс нейтрализации проводится при рН=8,5...10, при котором осаждаются остальные гидроокиси. Вторая стадия осуществляется известью. В этом случае ценность представляет шлам, полученный на первой стадии нейтрализации.

6. Очистка сточных вод химических промывок и консервации оборудования

Сточные воды от предпусковых (после окончания монтажа) и эксплуатационных химических промывок и консервации оборудования представляют резкие, «залповые» сбросы с большим разнообразием содержащихся в них веществ. Общее количество загрязненных стоков от одной химической промывки, подлежащих очистке, м 3 , можно определить из выражения

Где а -суммарный объем промывочных контуров, м 3 ; К -коэффициент, равный 25 для газомазутных ТЭС и 15 дляпылеугольных, так как в последнем случае часть отмывочных вод с содержанием железа менее 100 мг/л может быть сброшена в ГЗУ. Различают два основных варианта очистки отмывочных и консервационных вод:

    на ТЭС, работающих на жидком и газообразном топливе, а также на угольных ТЭС с разомкнутой (прямоточной) системой ГЗУ; на ТЭС, работающих на твердом топливе с оборотной системой ГЗУ.
По первому варианту предусматриваются следующие стадии очистки: сбор всех отработанных растворов в емкости-усреднители, выведение из раствора токсичных веществ второй группы, очистка воды от веществ третьей группы. Сбор и обезвреживание сточных вод производятся на установке, включающей двухсекционный открытый бассейн или емкость-усреднитель, баки-нейтрализаторы и бак для коррекции рН. Стоки первоначальных водных промывок оборудования, загрязненные продуктами коррозии и механическими примесями, направляются в первую секцию открытого бассейна. После отстаивания осветленная вода из первой секции должна перепускаться во вторую - усреднитель бассейна. В эту же секцию отводятся стоки с рН=6...8 от водных промывок после завершения операции по вытеснению кислых и щелочных растворов. Вода из секции-усреднителя должна повторно использоваться для подпитки оборотных систем водоснабжения или ГЗУ. Примерный состав стоков в бассейне-отстойнике указан в табл.2. Кислые и щелочные растворы от химических очисток оборудования собираются в баки-нейтрализаторы (рис.12), вмещающие 7...10 объемов очищаемого контура, для их взаимной нейтрализации. Растворы из баков-нейтрализаторов и использованные растворы от консервации оборудования направляются в бак для коррекции рН в целях проведения их окончательной нейтрализации, осаждения ионов тяжелых металлов (железа, меди, цинка), разложения гидразина, разрушения нитратов. Донейтрализация и осаждение железа производятся путем подщелачивания растворов известью до рН=10...12 в зависимости от состава обезвреживаемых сточных вод. Для осаждения шлама и осветления вода отстаивается не менее двух суток, после чего шлам удаляется на шламоотвал предочисток водоподготовительных установок или на золоотвал. Если в промывочных растворах на основе лимонной кислоты кроме железа присутствуют также медь и цинк, то для осаждения меди и цинка следует применять сульфид натрия, который необходимо добавлять в раствор после отделения шлама гидрооксида железа. Осадок сульфидов меди и цинка должен уплотняться отстаиванием не менее суток, после чего шлам удаляется на шламоотвал предочистки.

Рис.12. Схема очистки промывочных сточных вод:

1 - бак; 2 - бак-нейтрализатор; 3 - шламоотстойник; 4 - бак для коррекции рН; 5 - подача известкового молока; б - подача хлорной извести; 7 - подача сульфида натрия (Nа 2 S); 8 - серная кислота: 9 - подача воздуха; 10 - вода на очистку; 11 - вода на фильтр-пресс: 12 - сброс
Для обезвреживания промывочных и консервирующих растворов, содержащих нитриты, можно использовать кислые промывочные растворы или производить обработку растворов кислотой. При этом следует учитывать, что при разрушении нитритов образуются газы NO и NО 2 , плотность которых выше плотности воздуха. Поэтому доступ в емкость, в которой проводилось обезвреживание растворов, содержащих нитрит, может быть разрешен только после тщательной вентиляции этой емкости и проверки ее на загазованность. Гидразин и аммиак, содержащиеся в сточных водах, могут быть разрушены обработкой растворов хлорной известью. При этом гидразин окисляется хлорной известью с образованием свободного азота. Для практически полного разрушения гидразина количество хлорной извести должно быть увеличено по сравнению со стехиометрическим примерно на 5%. При взаимодействии аммиака с хлорной известью образуется хлорамин, который в присутствии небольшого избытка аммиака окисляет его с образованием азота. При большом избытке аммиака в результате его взаимодействия с хлорамином образуется гидразин. Поэтому при обезвреживании хлорной известью растворов, содержащих аммиак, необходимо строго выдерживать стехиометрическую дозу извести. Аммиак можно нейтрализовать в результате взаимодействия его с углекислотой воздуха при аэрации раствора в бакенейтрализаторе или в баке для коррекции рН. Осветленная вода, образующаяся после обезвреживания промывочных и консервирующих растворов, должна быть дополнительно обработана для придания ей нейтральной реакции (рН=6,5...8,5) и повторно использована на технологические нужды электростанции. Гидразин присутствует в стоках лишь в течение нескольких суток после слива растворов в усреднитель. Позже гидразин уже не обнаруживается, что объясняется его окислением при каталитическом участии железа и меди.

Рис.13. Схема узла очистки консервирующих растворов:

1 - сброс консервирующего раствора; 2 - подвод реагентов; 3 - бак сбора консервирующего раствора; 4 - подвод греющего пара: 5 - насос; 6 - сброс обезвреженного раствора: 7 - циркуляционный насос; 8 - эжектор: 9 - линия рециркуляции Технология очистки стоков от фтора заключается в обработке известью и сернокислым глиноземом в следующем соотношении: на 1 мг фтора - не менее 2 мг Аl 2 О 3 . Остаточное содержание фтора достигается не более 1,4...1,6 мг/л. Осветленная вода из бака для коррекции рН отправляется на биохимическую очистку, являющуюся универсальным методом очистки. В основе процесса биохимической очистки лежит жизнедеятельность некоторых видов микроорганизмов, которые могут использовать органические и минеральные вещества, содержащиеся в сточных водах, в качестве питательных веществ и источников энергии. Для биологической очистки применяют аэротенки и биофильтры. Существуют ограничения для концентраций некоторых веществ в воде, направляемой на биоочистку. При повышенных концентрациях эти вещества становятся ядовитыми для микроорганизмов. Максимально допустимые концентрации веществ в воде, направляемой на биологическую очистку, составляют, мг/кг:

    гидразина 0,1; железа сернокислого 5; хлора активного 0,3; фталевого ангидрида 0,5.
Трилон Б в чистом виде подавляет процессы нитрификации при концентрации более 3 мг/л. Трилонаты при исходных концентрациях менее 100 мг/л полностью поглощаются активным илом очистных биологических сооружений. На практике применяется также совместная очистка осветленной воды с бытовыми стоками на районных и городских очистных сооружениях. Такое решение узаконено существующими санитарными нормами и правилами, в которых указываются также и условия приема на очистные сооружения стоков и предельно допустимые концентрации в них вредных веществ. На ТЭС с замкнутой системой ГЗУ возможен сброс промывочных и консервационных растворов непосредственно на золоотвалы, если рН>8. В противном случае промывочная вода предварительно нейтрализуется во избежание коррозии оборудования трубопроводов системы ГЗУ. Токсичные примеси сорбируются золой. При отсутствии оборотной системы ГЗУ на ТЭС консервационные растворы подвергаются обработке различными окислителями: кислородом воздуха, хлорной известью и др. На рис.13 приведена принципиальная схема установки для очистки консервационных растворов. Отработанный раствор собирается в баке, емкость которого должна быть достаточной для приема сразу всего его количества. К баку подводятся пар и реагенты. Для ускорения процесса организуется циркуляция раствора с одновременным подводом воздуха при помощи эжектора. Продувка воздухом содействует разложению нитритов и гидразина.

7. Обезвреживание сточных вод систем гидрозолоудаления

Количество сточных вод систем ГЗУ во много раз превышает суммарный объем всех остальных загрязненных стоков ТЭС. По этой причине очистка сточных вод систем ГЗУ, а для оборотных систем очистка продувочной воды весьма затруднительны. Очистка этих стоков усложняется высокой концентрацией фторидов, мышьяка, ванадия, ртути, германия и некоторых других элементов, обладающих токсичными свойствами. В применении к таким водам более целесообразно их обезвреживание, т. е. снижение концентрации вредных веществ до значений, при которых возможны их сбросы в водоемы. Основные методы обезвреживания:

    осаждение примесей; сорбция примесей на различных сорбентах, в том числе на золе; предварительная обработка с применением окислительно-восстановитель-ных процессов.
Наиболее проверенным методом, применяемым для удаления токсичных примесей из сточных вод, является осаждение примесей в результате образования малорастворимых химических соединений или в результате их адсорбции на поверхности образуемых в воде твердых частиц. В качестве реагента используется, как правило, известь. При необходимости применяются дополнительные реагенты, усиливающие процесс осаждения. Некоторые образующиеся комплексы токсичных веществ с кальцием обладают достаточно высокой растворимостью. Например, даже наименее растворимый из комплексов мышьяк с кальцием ЗСа(АsО 4) 2 Са(ОН) 2 имеет растворимость 4 мг/кг, что в 18 раз превосходит санитарную норму концентрации мышьяка в водоемах. Для улучшения вывода мышьяка из воды одновременно с известью используют сернокислое железо (железистый купорос) FеSO 4 7Н 2 О. При этом образуется труднорастворимое соединение FеАsО. Этот процесс усиливается адсорбцией мышьяка хлопьями гидрооксида железа. В результате совместной с известкованием коагуляции можно снизить содержание мышьяка в сточной воде ГЗУ при рН=9...10 до его ПДК в водоемах (ниже 0,05 мг/кг). Одновременно происходит и соосаждение хрома. Соединения фтора хорошо осаждаются при добавочном вводе хлористого магния (МgСl 2) в сточную воду. Фтор осаждается совместно с хлопьями образующегося гидрооксида Мg(ОН) 2 . Например, на Рефтинской ГРЭС, сжигающей экибастузский уголь, оптимальными условиями для снижения концентрации фтора являются рН= 10,2...10,4 при дозе магния, равной 50 мг/кг фтора. На ТЭС должно быть создано специальное хранилище для захоронения там осажденных веществ из продувочных вод систем ГЗУ. Применяется и ряд других веществ для осаждения фтора, например, на Рефтинской ГРЭС испытана коагуляция сточных вод ГЗУ сернокислым алюминием. При рН=4,5...5,5 и дозе сернокислого алюминия в виде безводного Аl 2 (SO 4) 3 , равной 18...23 мг на 1 мг удаляемого фтора, его концентрация снижалась почти до нуля. Сорбционная очистка основана на способности сорбентов извлекать токсичные примеси из сточных вод с образованием или без образования с сорбентами химических соединений. Сточные воды ГЗУ содержат сорбент - золу. В золе большинства углей содержится до 60% SiO 2 и до 30% Аl 2 О 3 , которые образуют в процессе сжигания топлива алюмосиликаты. Последние являются ионообменными материалами, способными сорбировать ионы многих металлов. Наличие в золе недожога приводит к сорбции золой органических и малодиссоциированных соединений из воды. Наладка системы ГЗУ позволяет откорректировать соотношение воды и золы, значение рН и в результате получить достаточно глубокое удаление токсичных примесей из сточных вод ГЗУ, используя свойства золы. Благодаря такой наладке можно избежать строительства специальных очистных сооружений. Принципиальным решением проблемы обезвреживания сточных вод систем ГЗУ является переход на пневматические сухие системы транспортировки и хранения золы и шлака с полным их использованием в народном хозяйстве.

8. Очистка сточных вод сероочистных установок

На ряде ТЭС Германии действуют установки по очистке сточных вод, образующихся на стадии осветления суспензии гипса в концентраторах. Например, на блоке 750 МВт ТЭС Бергкамен очистка сточных вод ведется в одноступенчатой установке, схема которой показана на рис.14. Загрязненная вода 1 поступает в двухкамерный резервуар 2 , куда для осаждения металлов подается 45%-ый раствор едкого натра из емкости 3 . Расчетное время действия NaOH - 5 мин. Этого достаточно для поддержания рН в диапазоне 8,7...9,3. Из резервуара 2 вода поступает в резервуар 4 , куда из емкости 5 подается флокулянт. После ввода флокулянта сточная вода направляется в осветлитель 6 . По опускной трубе, образованной внутренней и наружной оболочками осветлителя, вода поступает в промежуточный объем. Скорость нисходящего потока в этом объеме равна 10...15 м/с. Окончательное разделение воды и шлама происходит при изменении направления потока воды после внутренней оболочки. Поток движется вверх со скоростью 3 мм/с и в это время происходит агломерация и осаждение твердых частиц, которое опускается в нижнюю часть осветлителя и удаляются из него скребковым механизмом. Осветленная вода отводится через внутреннее сборное устройство 7 в бак отбора чистой воды 10 .
Рис.14. Схема установки очистки сточных вод на блоке 750 МВт ТЭС Бергкамен: 1 - загрязненная вода; 2 - двухкамерный резервуар; 3 - емкость едкого натра; 4 - резервуар; 5 - емкость флокулянта; 6 - осветлитель; 7 - сборное устройство осветлителя; 8 - шламонакопитель; 9 - фильтр-пресс; 10 - бак сбора чистой воды; 11 - насос; 12 - уровнемер; 13 - клапаны; 14 - расходомер и регулирующий клапан; 15, 16 - регулирующий клапан; 17 - очищенная вода; 18 - задвижка Концентрация твердой фазы в шламе, удаляемом из осветлителя, составляет около 10%. Шлам поступает в специальный шламонакопитель 8 . Небольшая часть шлама возвращается в стадию подщелачивания в качестве затравки. Объем шламонакопителя расчитан на двое суток работы установки при полной нагрузке для предотвращения ее аварийного останова в случае повреждения фильтр-пресса. Время работы фильтр-пресса 9 составляет 8 ч в сутки. За это время перерабатывается 3...4 загрузки. После опрессовки одной загрузки образуется 2 т шлама, содержание сухого вещества в нем 30...35%. Химический состав исходной и очищенной воды приводится в табл.3. Очищенная вода 17 возвращается в цикл сероочистки. Схема управления установкой показана также на рис.14. Раствор едкого натра дозируется в зависимости от исходной воды (расходомер и регулирующий клапан 14 ); флокулянт вводится пропорционально расходу воды (регулирующий клапан 15 ). Химический состав исходной и очищенной воды

после сероочистной установки Таблица 3

Показатель

Сточные воды

до очистки

после очистки

рН
Взевешенные вещества, мг/л
ХПК, мг/л
Кадмий, мг/л
Ртуть, мг/л
Хром, мг/л
Никель, мг/л
Цинк, мг/л
Свинец, мг/л
Медь, мг/л
Сульфиты, мг/л
Фториды, мг/л
Сульфаты, мг/л
Очищенные стоки откачиваются насосм из сборного бака 10 . Если рН обработанной воды ниже требуемого значения, то закрывается задвижка 18 и прекращается подача исходной воды, а клапан 16 переключается и обработанная вода возвращается на подщелачивание. Уравнемерами 12 непрерывно контролируется уровень шлама в осветлителе и шлакосборнике. В целом установка работает надежно. ВОПРОСЫ И ЗАДАНИЯ 1. Почему на ТЭС образуются сточные воды? 2. Какие сточные воды имеют место на угольных и газомазутных ТЭС? 3. Как влияют на флору и фауну водоемов нефтепродукты? 4. Что такое тепловое загрязнение природных водоемов? 5. Что Вы знаете о вреде для человека сточных вод ТЭС? 6. Как образуются сбросные воды водоподготовительных установок? Основные пути их обезвреживания. 7. Из каких элементов состоит система очистки воды от нефтепродуктов? 8. Как можно уловить ценные компоненты из обмывочных вод РВП мазутных ТЭС? 9. В чем различия очистки и использования сточных вод химических промывок на газовых, мазутных и угольных ТЭС? 10. Для чего используются биохимические методы очистки сточных вод? 11. Как ориентировочно определить количество сточной воды при химической промывке оборудования? 12. Какие методы обезвреживания используются применительно к сточным водам систем ГЗУ? 13. Как осуществить осаждение мышьяка и фтора? 14. Какую роль играют сорбционные свойства золы углей в очистке сточных вод ТЭС?

Сточные воды ТЭС и их очистка

1. Классификация сточных вод ТЭС

Эксплуатация тепловых электрических станций связана с использованием большого количества воды. Основная часть воды (более 90%) расходуется в системах охлаждения различных аппаратов: конденсаторов турбин, масло- и воздухоохладителей, движущихся механизмов и др.

Сточной водой является любой поток воды, выводимый из цикла электростанции.

К сточным, или сбросным, водам кроме вод систем охлаждения относятся: сбросные воды систем гидрозолоулавливания (ГЗУ), отработавшие растворы после химических промывок теплосилового оборудования или его консервации: регенерационные и шламовые воды от водоочистительных (водоподготовительных) установок: нефтезагрязненные стоки, растворы и суспензии, возникающие при обмывах наружных поверхностей нагрева, главным образом воздухоподогревателей и водяных экономайзеров котлов, сжигающих сернистый мазут.

Составы перечисленных стоков различны и определяются типом ТЭС и основного оборудования, ее мощностью, видом топлива, составом исходной воды, способом водоподготовки в основном производстве и, конечно, уровнем эксплуатации.

Воды после охлаждения конденсаторов турбин и воздухоохладителей несут, как правило, только так называемое тепловое загрязнение, так как их температура на 8…10 С превышает температуру воды в водоисточнике. В некоторых случаях охлаждающие воды могут вносить в природные водоемы и посторонние вещества. Это обусловлено тем, что в систему охлаждения включены также и маслоохладители, нарушение плотности которых может приводить к проникновению нефтепродуктов (масел) в охлаждающую воду. На мазутных ТЭС образуются сточные воды, содержащие мазут.

Масла могут попадать в сточные воды также из главного корпуса, гаражей, открытых распредустройств, маслохозяйств.

Количество вод систем охлаждения определяется в основном количеством отработавшего пара, поступающего в конденсаторы турбин. Следовательно, больше всего этих вод на конденсационных ТЭС (КЭС) и АЭС, где количество воды (т/ч), охлаждающей конденсаторы турбин, может быть найдено по формуле Q=KW где W — мощность станции, МВт; К -коэффициент, для ТЭС К = 100…150: для АЭС 150…200.

На электростанциях, использующих твердое топливо, удаление значительных количеств золы и шлака выполняется обычно гидравлическим способом, что требует большого количества воды. На ТЭС мощностью 4000 МВт, работающей на экибастузском угле, сжигается до 4000 т/ч этого топлива, при этом образуется около 1600…1700 т/ч золы. Для эвакуации этого количества со станции требуется не менее 8000 м 3 /ч воды. Поэтому основным направлением в этой области является создание оборотных систем ГЗУ, когда освободившаяся от золы и шлака осветленная вода направляется вновь на ТЭС в систему ГЗУ.

Сбросные воды ГЗУ значительно загрязнены взвешенными веществами, имеют повышенную минерализацию и в большинстве случаев повышенную щелочность. Кроме того, в них могут содержаться соединения фтора, мышьяка, ртути, ванадия.

Стоки после химической промывки или консервации теплосилового оборудования весьма разнообразны по своему составу вследствие обилия промывочных растворов. Для промывок применяются соляная, серная, плавиковая, сульфаминовая минеральные кислоты, а также органические кислоты: лимонная, ортофталевая, адипиновая, щавелевая, муравьиная, уксусная и др. Наряду с ними используются трилон Б, различные ингибиторы коррозии, поверхностно-активные вещества, тиомочевина, гидразин, нитриты, аммиак.

В результате химических реакций в процессе промывок или консервации оборудования могут сбрасываться различные органические и неорганические кислоты, щелочи, нитраты, соли аммония, железа, меди, трилон Б, ингибиторы, гидразин, фтор, уротропин, каптакс и т. д. Такое разнообразие химических веществ требует индивидуального решения нейтрализации и захоронения токсичных отходов химических промывок.

Воды от обмывки наружных поверхностей нагрева образуются только на ТЭС, использующих в качестве основного топлива сернистый мазут. Следует иметь в виду, что обезвреживание этих обмывочных растворов сопровождается получением шламов, содержащих ценные вещества — соединения ванадия и никеля.

При эксплуатации водоподготовки обессоленной воды на ТЭС и АЭС возникают стоки от склада реагентов, промывок механических фильтров, удаления шламовых вод осветлителей, регенерации ионитовых фильтров. Эти воды несут значительное количество солей кальция, магния, натрия, алюминия, железа. Например, на ТЭЦ, имеющей производительность химводоочистки 2000 т/ч, сбрасывается солей до 2,5 т/ч.

С предочистки (механические фильтры и осветлители) сбрасываются нетоксичные осадки — карбонат кальция, гидрооксид железа и алюминия, кремнекислота, органические вещества, глинистые частицы.

И, наконец, на электростанциях, использующих в системах смазки и регулирования паровых турбин огнестойкие жидкости типа иввиоль или ОМТИ, образуется небольшое количество сточной воды, загрязненной этим веществом.

Основным нормативным документом, устанавливающим систему охраны поверхностных вод, служат «Правила охраны поверхностных вод (типовое положение)» (М.: Госкомприроды, 1991 г.).

2. Влияние сточных вод ТЭС на природные водоемы

Природные водоемы представляют собой сложные экологические системы (экосистемы) существования биоценоза — сообщества живых организмов (животных и растений). Эти системы создавались в течение многих тысячелетий эволюции живого мира. Водоемы являются не только сборниками и хранилищами воды, в которых вода усредняется по качеству, но в них непрерывно протекают процессы изменения состава примесей — приближение к равновесию. Оно может быть нарушено в результате человеческой деятельности, в частности сброса сточных вод ТЭС.

Живые организмы (гидробионты), населяющие водоемы, тесно связаны между собой условиями жизни, и в первую очередь ресурсами питания. Гидробионты играют основную роль в процессе самоочищения водоемов. Часть гидробионтов (обычно растения) синтезируют органические вещества, используя при этом неорганические соединения из окружающей среды, такие, как СО 2 , NН 3 и др.

Другие гидробионты (обычно животные) усваивают готовые органические вещества. Водоросли также минерализуют органические вещества. В процессе фотосинтеза они при этом выделяют кислород. Основная часть кислорода поступает в водоем путем аэрации при контакте воды с воздухом.

Микроорганизмы (бактерии) интенсифицируют процесс минерализации органики при окислении ее кислородом.

Отклонение экосистемы от равновесного состояния, вызванное, например, сбросом сточных вод, может привести к отравлению и даже гибели определенного вида (популяции) гидробионтов, которое приведет к цепной реакции угнетения всего биоценоза. Отклонение от равновесия интенсифицирует процессы, приводящие водоем в оптимальное состояние, которые называют процессами самоочищения водоема. Важнейшие из этих процессов следующие:

осаждение грубодисперсных и коагуляция коллоидных примесей;

окисление (минерализация) органических примесей;

окисление минеральных примесей кислорода;

нейтрализация кислот и оснований за счет буферной емкости воды водоема (щелочности), приводящая к изменению ее рН;

гидролиз ионов тяжелых металлов, приводящий к образованию их малорастворимых гидроокисей и выделению их из воды;

установление углекислотного равновесия (стабилизация) в воде, сопровождающееся или выделением твердой фазы (СаСО 3), или переходом части ее в воду.

Процессы самоочищения водоемов зависят от гидробиологической и гидрохимической обстановки в них. Основными факторами, существенно влияющими на водоемы, являются температура воды, минералогический состав примесей, концентрация кислорода, показатель рН воды, концентрации вредных примесей, препятствующих или затрудняющих протеканию процессов самоочищения водоемов.

Для гидробионтов наиболее благоприятен показатель рН=6,5…8,5.

Так как сбросы воды из систем охлаждения оборудования ТЭС несут в основном «тепловое» загрязнение следует иметь в виду, что температура оказывает мощное воздействие на биоценоз в водоеме. С одной стороны, температура оказывает прямое влияние на скорость протекания химических реакций, с другой — на скорость восстановления дефицита кислорода. При повышении температуры ускоряются процессы размножения гидробионтов.

Восприимчивость живых организмов к токсичным веществам с повышением температуры обычно увеличивается. При повышении температуры до +30°С сокращается прирост водорослей, поражается фауна, рыбы становятся малоподвижными и перестают кормиться. Кроме того, с ростом температуры уменьшается растворимость кислорода в воде.

Резкий перепад температур, который возникает при сбросе в водоем нагретых вод, приводит к гибели рыбы и представляет серьезную угрозу рыбному хозяйству. Влияние сточных вод, температура которых на 6…9 С выше температуры речной воды, губительно даже для рыб, адаптированных к летней температуре до + 25 °C.

Среднемесячная температура воды в расчетном створе водоема хозяйственно-питьевого и культурно-бытового водопользования летом после сброса нагретой воды не должна повышаться более чем на 3 °C по сравнению с естественной среднемесячной температурой воды на поверхности водоема или водотока для наиболее жаркого месяца года. Для рыбохозяйственных водоемов температура воды в расчетном створе летом не должна повышаться более чем на 5 °C по сравнению с естественной в месте водовыпуска. Среднемесячная температура воды наиболее жаркого месяца в расчетном створе рыбохозяйственных водоемов не должна превышать 28 °C, а для водоемов с холодноводными рыбами (лососевыми и сиговыми) не должна превышать 20 °C.

Предельно допустимые концентрации вредных веществ в водоемах

Для водоемов санитарно-бытового водопользования

Для рыбохозяйственных водоемов

Вещество

ПДК мг/дм 3

Класс опасности

Лимитирующий показатель вредности

ПДК мг/дм 3

Аммиак NH 3

санитарно-токсикологический

токсикологический

Ванадий V 5+

Гидразин N 2 H 4

Железо Fe 2+

органолептический (цвет)

органолептический (привкус)

Мышьяк As 2+

санитарно-токсикологический

Никель Ni 2+

Нитраты (по NO 2 -)

Полиакриламид

отсутствие

Свицец Pb 2+

Формальдегид

Сульфаты (по SO 4)

органолептический (привкус)

санитарно-токсикологический

органолептический (запах)

токсикологический

Нефть и нефтепродукты

органолептический (пленка)

рыбохозяйственный

Предельно допустимой концентрацией (ПДК) вредного вещества в воде водоема называется его концентрация, которая при ежедневном воздействии в течение длительного времени на организм человека не вызывает каких-либо патологических изменений и заболеваний, обнаруживаемых современными методами исследований, а также не нарушает биологического оптимума в водоеме.

В табл. 1 приведены ПДК некоторых веществ, характерных для энергетики.

Какое же влияние оказывают на природные водоемы отдельные загрязнители, характерные для ТЭС?

Нефтепродукты. Попадающие в водоемы стоки, содержащие нефтепродукты, вызывают появление у воды запаха и привкуса керосина, образование пленки или масляных пятен на ее поверхности и отложений тяжелых нефтепродуктов на дне водоемов. Пленка нефтепродуктов нарушает процесс газообмена и препятствует проникновению в воду световых лучей, загрязняет берега и прибрежную растительность.

Попавшие в водоем нефтепродукты в результате биохимического окисления постепенно разлагаются на углекислоту и воду. Однако этот процесс протекает медленно и зависит от количества растворенного в воде кислорода, температуры воды и количества микроорганизмов в ней. В летнее время пленка нефтепродуктов разлагается на 50…80% в течение 5…7 дней, при температуре ниже +10°С процесс разложения идет более длительно, а при +4°С разложения вообще не происходит.

Донные отложения нефтепродуктов удаляются еще более медленно и становятся источником вторичного загрязнения воды.

Наличие в воде нефтепродуктов делает воду непригодной для питья. Особенно большой ущерб наносится рыбному хозяйству. Рыбы наиболее чувствительны к изменению химического состава воды и к попаданию в нее нефтепродуктов в эмбриональном периоде. Нефтепродукты, попадающие в водоем, приводят также к гибели планктона — важной составляющей кормовой базы рыб.

От загрязнения водоемов нефтепродуктами страдают также водоплавающие птицы. В первую очередь повреждаются оперение и кожа птиц. При обильном поражении птицы погибают.

Кислоты и щелочи. Кислые и щелочные воды изменяют показатель рН воды водоема в районе их сброса, Изменение рН отрицательно сказывается на флоре и фауне водоема, нарушает биохимические процессы и физиологические функции у рыб и других живых организмов. При повышении щелочности воды, т. е. рН>9,5 у рыб разрушается кожный покров, ткани плавников и жабры, водные растения угнетаются, ухудшается самоочищение водоема. При снижении показателя, т. е. рНг$ 5 неорганические (серная, соляная, азотная) и органические (уксусная, молочная, виннокаменная и др.) кислоты оказывают на рыб токсическое воздействие.

Соединения ванадия обладают способностью накапливаться в организме. Они являются ядами с весьма разнообразным действием на организм и способны вызвать изменения в органах кровообращения, дыхания, в нервной системе: приводят к нарушению обмена веществ и аллергическим поражениям кожи.

Соединения железа. Растворимые соли железа, образующиеся в результате воздействия кислоты на металл теплоэнергетического оборудования, при нейтрализации кислых растворов щелочи переходят в гидрат оксида железа, выпадающий в осадок и могущий отлагаться на жабрах рыб. Комплексы железа с лимонной кислотой отрицательно влияют на цвет и запах воды. Кроме того, соли железа обладают некоторым общим токсическим действием, а соединения трехвалентного (окисного) железа действуют обжигающе на пищеварительный тракт.

Соединения никеля поражают ткань легких, вызывают функциональные нарушения центральной нервной системы, желудочные заболевания, снижение кровяного давления.

Соединения меди обладают общим токсическим действием и при избыточном попадании в организм вызывают нарушения желудочно-кишечного тракта. Для рыб опасны даже незначительные концентрации меди.

Нитриты и нитраты. Воды, содержащие нитриты и нитраты в количествах, превышающих предельно допустимые. не могут быть использованы для питьевого водоснабжения. При их употреблении наблюдались случаи тяжелой метгемоглобинемии. Кроме того, нитраты неблагоприятно воздействуют на высших беспозвоночных и рыб.

Аммиак и соли аммония тормозят биологические процессы в водоемах и высокотоксичны для рыб. Кроме того, аммониевые соли в результате биохимических процессов окисляются до нитратов.

Трилон Б. Растворы трилона Б токсичны для микроорганизмов, в том числе и для тех, которые участвуют в процессах биохимической очистки. Комплексы трилона Б с солями жесткости обладают значительно меньшей токсичностью, однако комплексы его с солями железа окрашивают воду водоема и придают ей неприятный запах.

Ингибиторы ОП-7, ОП-10 придают запах воде и специфический привкус рыбе. Поэтому для водных объектов, используемых для рыбохозяйственных целей, лимитирующим показателем вредности ингибиторов ОП-7 и ОП-10 является токсикологический показатель, а для водных объектов хозяйственно-питьевого и культурно-бытового водопользования — органолептический (вкус, запах).

Гидразин, соединения фтора, мышьяка, ртути ядовиты как для человека, так и для фауны водоемов. Однако в воде, используемой для питьевых целей, должна быть определенная концентрация фтор-ионов (приблизительно 1,0−1,5 мг/л). Как меньшие, так и большие концентрации фтора вредны для человеческого организма.

Повышенное солесодержание сточных вод, даже обусловленное наличием нейтральных солей, близких по составу к солям, содержащимся в обычных водах водоемов, может оказать отрицательное влияние на флору и фауну водоемов.

Шлам , находящийся в сбросных водах предочисток водоподготовительных установок, содержит органические вещества. Попадая в водоем, он способствует снижению содержания кислорода в воде из-за окисления этих органических веществ, что может привести к нарушению процессов самоочищения водоема, а в зимнее время к развитию замора рыбы. Содержащиеся в шламе хлопья оксидов железа и избыток извести поражают слизистую жабр у рыбы, приводя ее к гибели.

Снижение отрицательного влияния ТЭС на водоемы осуществляется следующими основными путями: очисткой сточных вод перед их сбросом в водоемы, организацией необходимого контроля; уменьшением количества сточных вод вплоть до создания бессточных электростанций; использованием сточных вод в цикле ТЭС; усовершенствованием технологии самой ТЭС.

В табл. 2 представлен примерный усредненный состав стоков исходя из полученных данных химического анализа проб, взятых из бассейнов-отстойников некоторых электростанций. Вещества эти по своему влиянию на санитарный режим водоемов могут быть разделены на три группы.

Примерный состав стоков в бассейне-отстойнике до очистки, при различных методах химических промывок, мг/л

Компоненты

Соляно-кислотный

Комплексный

Аддитиново-кислотный

Фталевокислотный

Гидразино-кислотный

Дикарбокислотный

Хлориды Cl -

Сульфаты SO 4

Железо Fe 2+ , Fe 3+

ПБ-5, В-1, В-2

Формальдегид

Аммонийные соединения NH 4 +

Нитриты NO 2-

Гидразин N 2 H 4

К первой должны быть отнесены неорганические вещества, содержание которых в данных растворах близко к значениям ПДК. Ими являются сульфаты и хлориды кальция, натрия, магния. Сброс в водоем сточных вод, содержащих эти вещества, будет лишь несколько повышать солесодержание воды.

Вторую группу составляют вещества, содержание которых значительно превышает ПДК; к ним необходимо отнести соли металлов (железа, меди, цинка), фторсодержащие соединения, гидразин, мышьяк. Эти вещества не могут быть пока биологически переработаны в безвредные продукты.

Третья группа объединяет все органические вещества, а также аммонийные соли, нитриты, сульфиды. Общим для веществ этой группы является то, что все они могут быть окислены до безвредных или менее вредных продуктов: воды, углекислоты, нитратов, сульфатов, фосфатов, поглощая при этом из воды растворенный кислород. Скорость этого окисления для разных веществ различна.

3. Обработка сбросных вод водоподготовительных установок

сточный электрический станция водоподготовительный Методы очистки сточных вод подразделяются на механические (физические), физико-химические, химические и биохимические.

Непосредственное выделение примесей из сточных вод может быть осуществлено следующими путями (механические и физико-химические методы):

механическое удаление крупных примесей (на решетках, сетках);

микропроцеживание (мелкие сетки);

отстаивание и осветление;

применение гидроциклонов;

центрифугирование;

фильтрование;

флотация;

электрофорез;

мембранные методы (обратный осмос, электродиализ).

Выделение примесей с изменением фазового состояния воды или примеси (физико-химические методы):

примесь — газовая фаза, вода-жидкая фаза (дегазация или отгонка с паром);

примесь — жидкая или твердая фаза, вода — жидкая фаза (выпаривание);

примесь и вода — две жидкие не смешивающиеся фазы (экстракция и коалесценция);

примесь — твердая фаза, вода — твердая фаза (вымораживание);

примесь — твердая фаза, вода — жидкая фаза (кристаллизация, сорбция, коагуляция).

Методы очистки сточных вод путем превращения примесей с изменением их химического состава (химические и физикохимические методы) разделяются по характеру процессов на следующие группы:

образование труднорастворимых соединений (известкование и др.);

синтез и разложение (разложение комплексов тяжелых металлов при вводе щелочей и др.);

окислительно-восстановительные процессы (окисление органических и неорганических соединений сильными окислителями и др.);

термическая переработка (аппараты с погружными горелками, сжигание кубовых остатков и др.).

Наибольшее практическое значение при очистке сточных вод ТЭС имеют методы: отстаивание, флотация, фильтрование, коагуляция и сорбция, известкование, разложение и окисление веществ.

В зависимости от качества исходной воды и требований к качеству добавочной воды котлов применяются различные варианты схем водоподготовительных установок. В общем виде они включают в себя предочистку воды и ионный обмен.

Непосредственный сброс сточных водоподготовительных установок в водоемы недопустим из-за резкопеременных значений рН, выходящих за пределы 6,5−8,5, оптимальных для водоемов, а также высокой концентрации в них грубодисперсных примесей и солей.

Удаление грубодисперсных примесей и регулирование рН не представляют проблемы. Наиболее сложной задачей является снижение концентрации истинно-растворенных примесей (солей). Ионообменный метод здесь непригоден, так как приводит к возрастанию количества сбрасываемых солей. Более предпочтительны безреагентные методы (выпаривание, обратный осмос) или с ограниченным применением реагентов (электродиализ). Но и в этих случаях обработка воды на водоподготовительных установках производится дважды.

Поэтому главной задачей при проектировании и эксплуатации водоподготовки ТЭС следует считать уменьшение сброса сточных вод.

В соответствии с условиями сброса сточных вод технология их очистки состоит обычно из трех этапов:

сброса всех отработавших растворов и отмывочных вод в усреднитель;

выделение из жидкости токсичных веществ второй группы с последующим обезвоживанием получающегося осадка; очистка от веществ третьей группы.

Продувочная вода осветлителей обрабатывается и повторно используется после осветления ее на шламоотвале, или в специальных отстойниках, или на фильтр-прессах, или барабанно-вакуумных фильтрах с возвратом воды во всех случаях в баки повторного использования промывочных вод механических фильтров. Шлам из отстойников периодического действия направляется на шламоотвал с использованием для этой цели нейтрализованных регенерационных вод ионитовых фильтров. Обезвоженный шлам, полученный на фильтр-прессе, необходимо вывозить в места захоронения, имеющие надежную защиту от попадания вредных веществ в окружающую среду.

Схема установки для обезвоживания шлама предочистки на одной из ТЭС представлена на рис1.

Рис. 1. Принципиальная схема установки для обезвоживания шлама продувки осветлителей:

1 — подвод шлама; 2 — осветленная вода на ВПУ; 3 — техническая вода; 4 — воздух;

5 — обезвоженный шлам; 6 — барабанно-вакуумный фильтр; 7 — воздуходувка; 8 — вакуум-насос; 9 — ресивер; 10 — бак постоянного уровня; 12 — насос; 12 — емкость; 13 — бункер для обезвоженного шлама Продувочная вода из осветлителя направляется в сборную емкость. Для предупреждения осаждения шлама в этой емкости через продувочную воду барботируется воздух, затем вода перекачивается в бак постоянного уровня и поступает в вакуумный фильтр, в котором происходит отделение шлама. Обезвоженный шлам сбрасывается в бункер и затем направляется на шламоотвал..

Рис. 2. Схемы самонейтрализации (а ) и нейтрализации (б ) известью сточных вод водоподготовительных установок:

1-Н-катионитный фильтр; 2-анионитный фильтр; 3-известковая мешалка; 4-насос известковой мешалки; 5-насос-дозатор известкового молока; 6-приямок сбора регенерадионных вод; 7-перекачивающий насос; 8-бак-нейтрализатор; 9-насос перекачивания и сброса; 10-охлаждающая вода после конденсаторов турбин или водоисточник Продувка осветлителей может направляться также в систему ГЗУ или на нейтрализацию кислых стоков (при рН>9).

Вода от промывки механических фильтров при наличии предочистки направляется либо в линию исходной воды (при коагуляции), либо в нижнюю часть каждого осветлителя (при известковании). Для обеспечения постоянного расхода эта вода предварительно собирается в бак регенерации промывочных вод механических фильтров.

При отсутствии предочистки вода от промывки механических фильтров может либо обрабатываться отстаиванием в специальном отстойнике с возвратом осветленной воды в линию исходной воды и удалением отстоявшегося шлама на шламоотвал, либо использоваться в системе ГЗУ, либо направляться в систему сбора регенерационных вод ионитовых фильтров.

Сточные воды ионообменной части водоподготовительной установки, если не считать некоторого количества грубодиперсных примесей, поступающих при взрыхлении фильтров, представляют собой истинные растворы солей. В зависимости от местных условий эти воды направляются: в водоемы с соблюдением санитарно-гигиенических и рыбохозяйственных требований; в системы гидрозолоудаления; в пруды-испарители при благоприятных климатических условиях; на выпарные установки; в подземные водоносные горизонты.

Сброс сточных вод в водоем возможен при соблюдении определенных условий. Так, при кислых сточных водах необходимо выполнение следующего неравенства:

а при щелочных

где а — коэффициент смешения на участке между выпуском сточных вод и расчетным створом ближайшего пункта водопользования;

Q — расчетный расход водоема, равный для незарегулированных рек наибольшему среднемесячному расходу воды 95%-ной обеспеченности;

Щ — изменение щелочности воды, которое вызовет изменение рН исходной воды до предельно допустимого значения, мг-экв/кг;

Q CЩ и Q СК — суточные сбросы щелочи и кислоты в сточных водах соответственно, г-экв.

Сбросы кислоты и щелочи определяются по следующим выражениям:

где G Щ и G К — суточные расходы щелочи и кислоты соответственно, кг;

q Щ и q К — удельные расходы щелочи и кислоты при регенерации, г-экв/г-экв.

Величина Щ определяется по формуле

где Щ 0 — щелочность исходной воды водоема, мг-экв/кг;

рН Д — допустимый показатель рН воды после смешения сточной воды с водой водоисточника (6,5 и 8,5);

рН=рН Д -рН 0 — величина, на которую допустимо изменять показатель рН воды водоисточника;

рН 0 — показатель рН воды при температуре водоема;

— ионная сила воды в водоеме;

К 1 — константа первой ступени диссоциации Н 2 СО 3 при температуре воды в водоеме.

Если сброс сточных вод в водоем нарушает эти условия, то необходимо применять предварительную нейтрализацию. В большинстве случаев сточные воды ионообменной части водоподготовительных установок после смешения сбросов регенеративных вод от катионитов и анионитных фильтров имеют кислую реакцию. Для нейтрализации применяют щелочные реагенты, как доломит, различные щелочи, но чаще всего известь.

Рис. 3. Схема нейтрализации щелочных регенерационных вод дымовыми газами:

1 — Н-катионитный фильтр; 2 — анионитный фильтр; 3 — приямок сбора регенерационныхвод; 4 — перекачивающий насос; 5 — бак нейтрализации; 6 — распределительная труба; 7 — насос перемешивания и сброса; 8 — эжектор; 9 — дымовые газы, очищенные от золы; 10 — охлаждающая вода после конденсаторов турбин Нейтрализация известью не вызывает столь резкого повышения солесодержания воды, как при использовании других реагентов. Происходит это по той причине, что при нейтрализации известью образуется осадок, который затем выводится из воды. Положительный опыт получен также при нейтрализации сточных вод аммиачной водой.

Суточный расход реагентов, необходимых для нейтрализации кислых вод, можно записать как Q СР =Q СК -Q СЩ , а щелочных — как Q СР =Q СЩ -Q СК .

При нейтрализации известью суточный расход 100%-ного СаО составляет Q СаО =28Q СР 10 -3 .

На рис. 2 приведены схемы нейтрализации кислых сточных вод.

Если после смешения регенерационных сбросов вода имеет щелочной характер, то ее нейтрализацию можно проводить дымовыми газами за счет растворения СО 2 , SО 3 , NО 2 .

Необходимый объем дымовых газов V для нейтрализации суточного объема щелочных сточных вод определяется по формуле

где V Г — полный объем дымовых газов, образующихся при сжигании топлива, после золоуловителя, м 3 /кг или м 3 /м 3 ;

V SO2 ; V CO2 и V NO2 — объемы соответствующих газов, образующихся при сжигании топлива, м 3 /кг или м 3 /м 3 .

На рис. 3 приведена схема нейтрализации сточных вод водоподготовительных установок дымовыми газами с использованием барботажного способа растворения газа в воде.

Для тех же целей применяются и выпарные установки для концентрирования и глубокого упаривания сточных вод (Ферганская ТЭЦ, Казанская ТЭЦ-3). Концентрат подается на установку переработки концентрированных стоков. Установка представляет аппарат с погружными горелками (рис. 4), где упаривание производится до получения кристаллической соли, которая складируется в нефильтруемом хранилище.

4. Очистка сточных вод, содержащих нефтепродукты

Рис. 4. Аппарат погружного горения для выпаривания сточных вод:

1 — погружная горелка; 2 — аппарат; 3 — вентилятор; 4 — бак; 5 — регулятор уровня Для очистки сточных вод от нефтепродуктов применяются методы отстаивания, флотации и фильтрования.

Метод отстаивания основан на способности самопроизвольного разделения воды и нефтепродуктов. Частицы нефтепродуктов под действием сил поверхностного натяжения приобретают сферическую форму, и их размеры находятся в диапазоне от 2 до 310 2 мкм. Величина, обратная размеру частицы, называется степенью дисперсности. В основе процесса отстаивания лежит принцип выделения нефтепродуктов под действием разности плотностей воды и частиц масла. Содержание нефтепродуктов в стоках находится в широких пределах и составляет в среднем 100 мг/л.

Отстаивание нефтепродуктов производится в нефтеловушках (рис. 5). Вода подается в приемную камеру и, пройдя под перегородкой, попадает в отстойную камеру, где и происходит процесс разделения воды и нефтепродуктов. Очищенная вода, пройдя под второй перегородкой, выводится из нефтеловушки, а нефтепродукты образуют пленку на поверхности воды и удаляются специальным устройством. При выборе нефтеловушки необходимо принимать следующие допущения: скорость движения воды во всех точках поперечного сечения одинакова; поток воды имеет ламинарный характер; скорость всплывания частиц нефтепродуктов постоянна в течение всего времени прохождения потока.

Рис. 5. Схема типовой нефтеловушки:

1-сточная вода; 2 — приемная камера; 3-отстойная зона: 4-очищенная вода; 5 — вертикальные полупогруженные перегородки; 6-нефтесборные трубы; 7-пленка всплывших нефтепродуктов Значительное влияние на эффективность работы нефтеловушки оказывает температура воды. Увеличение температуры воды приводит к снижению ее вязкости, что способствует улучшению условий выделения частиц. Например, мазут при температуре воды ниже 30 С оседает в нефгеловушке, в интервале 30…40°С частицы мазута находятся во взвешенном состоянии и лишь свыше 40 °C проявляется эффект всплытия частиц.

Рис. 6. Нефтеловушка Гипроспецпромстроя со скребковым механизмом:

1 — приемная камера; 2 — перегородка; 3 — отстойная зона; 4 — перегородка; 5 — выпускная камера; 6 — переливной лоток; 7 — скребок; 8 — поворотные щелевые трубы; 9 — приямок; 10 — гидроэлеватор На рис. 6 представлена нефтеловушка Гидроспецпромстроя. Нефтепродукты, всплывающие на поверхность в отстойных камерах, сгоняют скребковым устройством к щелевым поворотным трубам, расположенным в начале и конце отстойных зон каждой секции, через которые они выводятся из нефтеловушки. При наличии тонущих примесей в сточной воде они выпадают на дно нефтеловушки, сгребаются тем же скребковым транспортером в приямок и при помощи данного клапана (или гидроэлеватора) выводятся из нефтеловушки. Нефтеловушки такого типа рассчитаны на производительность 15…220 кг/с по сточной воде.

Рис. 5.7. Схема установки для напорной флотации:

1-вход воды; 2-приемный резервуар; 3-всасывающая труба; 4-воздухопровод; 5-насос; 6-флотационная камера; 7-пеносборник; 8-отвод очищенной воды; 9-напорная емкость Флотационный метод очистки воды заключается в образовании комплексов частица нефтепродуктов — пузырек воздуха с последующим выделением этих комплексов из воды. Скорость всплывания таких комплексов в 10 2 …10 3 раз превышает скорость всплывания частиц нефтепродуктов. По этой причине флотация гораздо эффективнее отстаивания.

Рис. 8. Схема установки для безнапорной флотации:

1-вход воды; 2-приемный резервуар; 3-всасывающая труба; 4-воздухопровод; 5-насос; 6-флотационная камера; 7-пеносборник; 8-отвод очищенной воды

Различают напорную флотацию, при которой пузырьки воздуха выделяются из пересыщенного раствора его в воде, и безнапорную, которая осуществляется при помощи пузырьков воздуха, вводимых в воду специальными устройствами.

При напорной флотации (рис. 7) воздух растворяется в воде под избыточным давлением до 0,5 МПа, для чего в трубопровод перед насосом подается воздух, а затем водовоздушная смесь в течение 8−10 мин выдерживается в специальной напорной емкости, откуда и подается во флотатор, где происходят сброс давления, образование пузырьков воздуха и собственно флотационный процесс разделения воды и примеси. При снижении давления на входе воды во флотатор воздух, растворенный в воде, выделяется практически мгновенно, образуя пузырьки.

При безнапорной флотации (рис. 8) образование пузырьков происходит за счет механических (насосом, эжектором) или электрических сил и во флотатор вводится готовая дисперсная система пузырьки — вода. Оптимальные размеры пузырьков равны 15−30 мкм. Скорость всплывания пузырьков такого размера с захваченными частицами нефти составляет в среднем 0,9…10 -3 м/с, что в 900 раз превышает скорость всплывания частицы нефти размером 1,5 мкм.

Фильтрование замазученных и замасленных вод осуществляется на заключительной стадии очистки. Процесс фильтрования основан на прилипании эмульгированных частиц нефтепродуктов к поверхности зерен фильтрующего материала. Так как фильтрованию предшествует предварительная очистка сточных вод (отстаивание, флотация), перед фильтрами концентрация нефтепродуктов невысока и составляет 10 -4 …10 -6 в объемных долях.

При фильтровании сточных вод частицы нефтепродуктов выделяются из потока воды на поверхности зерен фильтрующего материала и заполняют наиболее узкие поровые каналы. При гидрофобной поверхности (не взаимодействующей с водой) частицы хорошо прилипают к зернам, при гидрофильной (взаимодействующей с водой) прилипание затруднено из-за наличия гидратной оболочки на поверхности зерен. Однако прилипающие частицы вытесняют гидратную оболочку и начиная с какого-то момента времени фильтрующий материал работает как гидрофобный.

Рис. 9. Изменение концентрации мазута в конденсате во время пропаривания фильтра при регенерации фильтрующего материала При работе фильтра частицы нефтепродуктов постепенно заполняют объем пор и насыщают фильтрующий материал. В итоге по истечении некоторого времени устанавливается равновесие между количеством масла, выделяющегося из потока на стенки, и количеством масла, стекающего в виде пленки в следующие по ходу потока слои фильтрующего материала.

С течением времени насыщенность нефтепродуктами сдвигается к нижней границе фильтрующего слоя и концентрациямасла в фильтрате увеличивается. В этом случае фильтр отключается на регенерацию. Повышение температуры воды способствует уменьшению вязкости нефтепродуктов и, следовательно, более равномерному его распределению по высоте слоя.

Традиционными материалами для загрузки фильтров являются кварцевый песок и антрацит. Иногда применяют сульфоуголь, отработанный в Nа-катионитовый фильтр. В последнее время применяют доменный и мартеновский шлак, керамзит, диатомит. Специально для этих целей ЭНИН им. Г. М. Кржижановского разработал технологию получения полукокса из канско-ачинских углей.

Рис. 10. Технологическая схема очистки сточных вод, содержащих нефтепродукты:

1-приемный бак: 2-нефтеловушка; 3-промежуточные баки; 4-флотатор; 5-напорная емкость; 6-эжектор; 7-мазутоприемник; 8-механический фильтр; 9-угольныий фильтр; 10-бак промывочной воды: 11-ресивер; 12-компрессор; 13-насосы: 14-раствор коагулянта Регенерацию фильтра следует производить водяным паром давлением 0,03…0,04 МПа через верхнее распределительное устройство. Пар разогревает уловленные нефтепродукты, и они под давлением вытесняются из слоя. Длительность регенерации обычно не превышает 3 ч. Вытеснение масла из фильтра сопровождается сначала ростом его концентрации в конденсате, а затем ее уменьшением (рис. 9). Конденсат сбрасывается в баки перед нефтеловушкой или флотатором.

Эффективность очистки сточных вод в насыпных фильтрах от нефтепродуктов составляет около 80%. Содержание нефтепродуктов составляет 2…4 мг/кг, что значительно превышает ПДК. Вода с таким качеством может направляться для технологических целей ТЭС. В ряде случаев этот фильтрат необходимо доочистить на сорбционных (загруженных активированным углем) или намывных фильтрах.

Полная типовая схема очистки сточных вод от нефтепродуктов показана на рис. 10. Сточные воды собираются в буферные усреднительные баки, в которых происходит выделение части наиболее крупных грубодисперсных. примесей и частиц нефтепродуктов. Сточная вода, частично освобожденная от примесей, направляется в нефтеловушку. Затем вода поступает в промежуточный бак и оттуда насосом подается на флотатор. Выделенные нефтепродукты направляются в мазутоприемник, затем подогреваются паром для снижения вязкости и эвакуируются из установки для сжигания.

Частично очищенная вода направляется во второй промежуточный бак и подается из него на фильтровальную установку, состоящую из двух ступеней. Первая ступень представляет собой фильтр с двухслойной загрузкой из кварцевого песка и антрацита. Вторая ступень состоит из сорбционного фильтра. загруженного активированным углем. Степень очистки воды по этой схеме составляет около 95%.

5. Очистка обмывочных вод поверхностей нагрева котлов

Обмывочные воды регенеративных воздухоподогревателей (РВП) представляют собой кислые растворы (рН= 1,3…3), содержащие грубодисперсные примеси: оксиды железа, кремнекислоту, продукты недожога, нерастворившуюся часть золы, свободную серную кислоту, сульфаты тяжелых металлов, соединения ванадия, никеля, меди и др.

В среднем обмывочная вода содержит, г/л: свободную кислоту (в пересчете на Н 2 SО 4) 4…5, железо 7…8, никель0,1…0,15, ванадий 0,3…0,8, медь 0,02…0,05, взвешенные вещества 0,5, сухой остаток 32…45.

Сточные воды от обмывок РВП и конвективных поверхностей нагрева котлов обезвреживаются нейтрализацией их щелочами. При этом ионы тяжелых металлов осаждаются в шлам в виде соответствующих гидрооксидов. Так как обмывочные воды мазутных котлов содержат ванадий, шлам, образующийся при их нейтрализации, является ценным сырьем для металлургической промышленности. Поэтому процесс нейтрализации и очистки обмывочных вод организуется так. чтобы конечными продуктами являлись обезвреженная осветленная вода и обезвоженный ванадиевый шлам, который направляется на металлургические заводы.

Нейтрализация обмывочных вод производится в одну или две стадии. При нейтрализации в одну стадию сточные воды обрабатываются известковым молоком до рН=9,5…10 и выпадения всех токсичных компонентов в осадок.

На рис. 11 показан разработанный ВТИ и Теплоэлектропроектом и внедренный на Киевской ТЭЦ-5 вариант схемы нейтрализации и обезвреживания обмывочных вод РВП. В этой схеме обмывочные воды подаются в бак-нейтрализатор, в который также дозируется и раствор извести. Раствор перемешивается насосами рециркуляции и сжатым воздухом, затем отстаивается в течение 7…8 ч, после чего часть осветленной воды (50−60%) используется повторно на обмывку котлов, а шлам подается для обезвоживания на фильтр-прессы типа ФПАКМ. Шлам шнековым транспортером отправляется на расфасовку и на склад. Производительность фильтр-пресса 70 кг/(м 2 ч). Фильтрат из фильтр-пресса поступает на катионитный фильтр для улавливания остатков катионов тяжелых металлов. Фильтрат катионитных фильтров сбрасывается в водоем.

Рис. 11. Схема установки для обезвреживания и нейтрализации обмывочных вод котлов и РВП:

1-обмывочная вода; 2-бак-нейтрализатор; 3-насос; 4-фильтр-пресс; 5-техническая вода на промывку фильтровальной ткани; шнековый транспортер; 7-машина для зашивания мешков; 8-погрузчик; 9-бак-сборник; 10-насос фильтрата; 11-насос раствора соли; 12-бак-мерник раствора соли; 13-фильтрат; 14-регенерационный раствор; /5-катионитный фильтр; 16-известковое молоко; 17-мешалка; 18-насос; 19-осветленная вода на повторное использование; 20-сжатый воздух Регенерация фильтра производится раствором NаСl, регенерационные воды сбрасываются в бак-нейтрализатор. Вода обезвреживается, однако получаемый шлам обогащен оксидами железа, сернокислым кальцием и беден соединениями ванадия (пентаоксида ванадия менее 3…5%).

Челябинским научно-исследовательским институтом металлургии (ЧНИИМ) совместно с Киевской ТЭЦ-5 разработан метод повышения содержания ванадия в осадке. При одностадийной нейтрализации в качестве реагента-осадителя используют смесь, содержащую гидрооксид железа Fе (ОH) 2 , кальция Са (ОН) 2 , магния Мg (ОН) 2 и силикат-ион SiO 3 2 - Процесс осаждения производится при рН=3,4…4,2.

Для повышения концентрации соединения ванадия в шламе процесс осаждения можно организовать в две стадии. На первой стадии производится обработка щелочью (NаОН) до рН=4,5−4,0, при котором происходит осаждение Fе (ОН) 3 и основной массы ванадия, а на второй стадии процесс нейтрализации проводится при рН=8,5…10, при котором осаждаются остальные гидроокиси. Вторая стадия осуществляется известью. В этом случае ценность представляет шлам, полученный на первой стадии нейтрализации.

6. Очистка сточных вод химических промывок и консервации оборудования

Сточные воды от предпусковых (после окончания монтажа) и эксплуатационных химических промывок и консервации оборудования представляют резкие, «залповые» сбросы с большим разнообразием содержащихся в них веществ.

Общее количество загрязненных стоков от одной химической промывки, подлежащих очистке, м 3 , можно определить из выражения

где а -суммарный объем промывочных контуров, м 3 ;

К -коэффициент, равный 25 для газомазутных ТЭС и 15 дляпылеугольных, так как в последнем случае часть отмывочных вод с содержанием железа менее 100 мг/л может быть сброшена в ГЗУ.

Различают два основных варианта очистки отмывочных и консервационных вод:

на ТЭС, работающих на жидком и газообразном топливе, а также на угольных ТЭС с разомкнутой (прямоточной) системой ГЗУ;

на ТЭС, работающих на твердом топливе с оборотной системой ГЗУ.

По первому варианту предусматриваются следующие стадии очистки: сбор всех отработанных растворов в емкости-усреднители, выведение из раствора токсичных веществ второй группы, очистка воды от веществ третьей группы. Сбор и обезвреживание сточных вод производятся на установке, включающей двухсекционный открытый бассейн или емкость-усреднитель, баки-нейтрализаторы и бак для коррекции рН.

Стоки первоначальных водных промывок оборудования, загрязненные продуктами коррозии и механическими примесями, направляются в первую секцию открытого бассейна. После отстаивания осветленная вода из первой секции должна перепускаться во вторую — усреднитель бассейна. В эту же секцию отводятся стоки с рН=6…8 от водных промывок после завершения операции по вытеснению кислых и щелочных растворов.

Вода из секции-усреднителя должна повторно использоваться для подпитки оборотных систем водоснабжения или ГЗУ. Примерный состав стоков в бассейне-отстойнике указан в табл. 2. Кислые и щелочные растворы от химических очисток оборудования собираются в баки-нейтрализаторы (рис. 12), вмещающие 7…10 объемов очищаемого контура, для их взаимной нейтрализации. Растворы из баков-нейтрализаторов и использованные растворы от консервации оборудования направляются в бак для коррекции рН в целях проведения их окончательной нейтрализации, осаждения ионов тяжелых металлов (железа, меди, цинка), разложения гидразина, разрушения нитратов.

Донейтрализация и осаждение железа производятся путем подщелачивания растворов известью до рН=10…12 в зависимости от состава обезвреживаемых сточных вод. Для осаждения шлама и осветления вода отстаивается не менее двух суток, после чего шлам удаляется на шламоотвал предочисток водоподготовительных установок или на золоотвал.

Если в промывочных растворах на основе лимонной кислоты кроме железа присутствуют также медь и цинк, то для осаждения меди и цинка следует применять сульфид натрия, который необходимо добавлять в раствор после отделения шлама гидрооксида железа. Осадок сульфидов меди и цинка должен уплотняться отстаиванием не менее суток, после чего шлам удаляется на шламоотвал предочистки.

Рис. 12. Схема очистки промывочных сточных вод:

1 — бак; 2 — бак-нейтрализатор; 3 — шламоотстойник; 4 — бак для коррекции рН; 5 — подача известкового молока; б — подача хлорной извести; 7 — подача сульфида натрия (Nа 2 S); 8 — серная кислота: 9 — подача воздуха; 10 — вода на очистку; 11 — вода на фильтр-пресс: 12 — сброс Для обезвреживания промывочных и консервирующих растворов, содержащих нитриты, можно использовать кислые промывочные растворы или производить обработку растворов кислотой. При этом следует учитывать, что при разрушении нитритов образуются газы NO и NО 2 , плотность которых выше плотности воздуха. Поэтому доступ в емкость, в которой проводилось обезвреживание растворов, содержащих нитрит, может быть разрешен только после тщательной вентиляции этой емкости и проверки ее на загазованность.

Гидразин и аммиак, содержащиеся в сточных водах, могут быть разрушены обработкой растворов хлорной известью. При этом гидразин окисляется хлорной известью с образованием свободного азота. Для практически полного разрушения гидразина количество хлорной извести должно быть увеличено по сравнению со стехиометрическим примерно на 5%.

При взаимодействии аммиака с хлорной известью образуется хлорамин, который в присутствии небольшого избытка аммиака окисляет его с образованием азота. При большом избытке аммиака в результате его взаимодействия с хлорамином образуется гидразин. Поэтому при обезвреживании хлорной известью растворов, содержащих аммиак, необходимо строго выдерживать стехиометрическую дозу извести.

Аммиак можно нейтрализовать в результате взаимодействия его с углекислотой воздуха при аэрации раствора в бакенейтрализаторе или в баке для коррекции рН. Осветленная вода, образующаяся после обезвреживания промывочных и консервирующих растворов, должна быть дополнительно обработана для придания ей нейтральной реакции (рН=6,5…8,5) и повторно использована на технологические нужды электростанции. Гидразин присутствует в стоках лишь в течение нескольких суток после слива растворов в усреднитель. Позже гидразин уже не обнаруживается, что объясняется его окислением при каталитическом участии железа и меди.

Рис. 13. Схема узла очистки консервирующих растворов:

1 — сброс консервирующего раствора; 2 — подвод реагентов; 3 — бак сбора консервирующего раствора; 4 — подвод греющего пара: 5 — насос; 6 — сброс обезвреженного раствора: 7 — циркуляционный насос; 8 — эжектор: 9 — линия рециркуляции Технология очистки стоков от фтора заключается в обработке известью и сернокислым глиноземом в следующем соотношении: на 1 мг фтора — не менее 2 мг Аl 2 О 3 . Остаточное содержание фтора достигается не более 1,4…1,6 мг/л.

Осветленная вода из бака для коррекции рН отправляется на биохимическую очистку, являющуюся универсальным методом очистки.

В основе процесса биохимической очистки лежит жизнедеятельность некоторых видов микроорганизмов, которые могут использовать органические и минеральные вещества, содержащиеся в сточных водах, в качестве питательных веществ и источников энергии. Для биологической очистки применяют аэротенки и биофильтры. Существуют ограничения для концентраций некоторых веществ в воде, направляемой на биоочистку. При повышенных концентрациях эти вещества становятся ядовитыми для микроорганизмов.

Максимально допустимые концентрации веществ в воде, направляемой на биологическую очистку, составляют, мг/кг:

гидразина 0,1;

железа сернокислого 5;

хлора активного 0,3;

фталевого ангидрида 0,5.

Трилон Б в чистом виде подавляет процессы нитрификации при концентрации более 3 мг/л. Трилонаты при исходных концентрациях менее 100 мг/л полностью поглощаются активным илом очистных биологических сооружений.

На практике применяется также совместная очистка осветленной воды с бытовыми стоками на районных и городских очистных сооружениях. Такое решение узаконено существующими санитарными нормами и правилами, в которых указываются также и условия приема на очистные сооружения стоков и предельно допустимые концентрации в них вредных веществ.

На ТЭС с замкнутой системой ГЗУ возможен сброс промывочных и консервационных растворов непосредственно на золоотвалы, если рН>8. В противном случае промывочная вода предварительно нейтрализуется во избежание коррозии оборудования трубопроводов системы ГЗУ. Токсичные примеси сорбируются золой.

При использовании этилированного бензина автомобильный двигатель выбрасывает соединения свинца. Свинец опасен тем, что способен накапливаться, как во внешней среде, так и в организме человека. Уровень загазованности магистралей и при магистральных территорий зависит от интенсивности движения автомобилей, ширины и рельефа улицы, скорости ветра, доли грузового транспорта и автобусов в общем потоке...

Научные интересы: процессы флокуляции зооглейно-мицеллярных конгломератов частиц активного ила с преобладанием психрофильных микроорганизмов, образо-ванных в естественных условиях под воздействием дли -тельного периода низких температур и их резких суточных колебаний.

Проблема утилизации и уничтожения отходов ПВХ (именно отходов, а не брака и выпрессовок) от различных производств (в первую очередь линолеума и полимерной обуви) остро стояла еще в СССР. Сжигание отходов ПВХ практически неприемлемо. Простая вторичная переработка является зачастую экономи-. чески неэффективным процессом (особенно при наличии разнородных материалов, например, ПВХ +...

В каждом случае при использовании осадков сточных вод, активного ила, жидких стоков животноводческих комплексов необходимо определять уровень их загрязнения тяжелыми металлами. Водные вытяжки из некоторых растений (береза, черемуха, ива) в высоких концентрациях можно использовать для ингибирования роста и развития некоторых сорных трав- а применение их в малых концентрациях может стимулировать...

Диссертация

Структура и объем работы. Диссертационная работа состоит из введения, 4 глав, выводов, практических предложений, и списка литературы. Объем работы составляет 154 страницы, 27 рисунков, 13 таблиц, 4 приложения. Список литературы содержит 237 публикации, в том числе 17 иностранных источников.

Аккумуляция и извлечение тяжелых металлов из активных илов кальциевыми материалами

Показаны условия (продолжительность перемешивания, температура, рН, дозы материалов) обеспечивающие обезвреживание реальных активных илов биологических очистных сооружений от тяжелых металлов при применении различных кальциевых материалов: мела, гипса, фосфорита, фосфогипса, апатита. Таковыми условиями являются рН = 6,8, t = 20 - 25 °C и продолжительность перемешивания 60 мин. Определены...

Диссертация

Необходимо отметить, что на различных участках реки Чулым в течение всего периода исследований наблюдается идентичность в отношении качественного состава фитопланктона: и повышение температуры воды на станциях 2, 3 и 4, под действием сточных вод Назаровской ГРЭС, не приводит к смене видов-доминантов. Изменения наблюдаются лишь в количественных характеристиках представленных в альгофлоре видов....

Публикации. Материалы диссертации опубликованы в 58 работах, в том числе монография и главы в 2-х монографиях, карты эффективных удельных активностей ЕРН минералов в месторождениях и почв, «Нормы допустимых уровней гамма-излучения и радона на участках застройки» Волгоградской области. Структура и объем диссертации. Диссертационная работа состоит из введения, 6 глав, общих выводов, списка...

Диссертация

А - активация, И - ингибирование Серая лесная почва ---Выщелоченный чернозем. Как видно из рисунка, нефтяное загрязнение приводит к снижению активности большинства ферментов серного обмена. Противоречие между ингибирующим влиянием нефти на активность ферментов серного обмена и стимуляцией роста численности тионовых и сульфатвосстанавливающих бактерий можно объяснить развитием своеобразного...

Диссертация

9−19,7 экз./м), запасы нитратного азота в пахотном слое (на 3,7−7,2 кг/га), снижают плотность сложения почвы.3. Биологические препараты повышают общую и продуктивную кустистость ярового ячменя, озерненность колоса и массу 1000 зерен. Они увеличивают темпы прироста площади листовой поверхности в течение периода вегетации и фотосинтетический потенциал посевов, следовательно, и продолжительность...


ИНФОРМЭНЕРГО

Москва 1976

Настоящее «Руководство» разработано Всесоюзным государственным ордена Ленина и ордена Октябрьской Революции проектным институтом «Теплоэлектропроект» и обязательно для применения при проектировании вновь строящихся и реконструируемых тепловых электрических станций.

«Руководство» разработано в развитие «Временных указаний по технологическому проектированию сооружений для очистки производственных сточных вод тепловых электростанций», которые с октября 1976 г. утрачивают силу.

«Руководство» согласовано с Министерством мелиорации и водного хозяйства СССР, Главрыбводом Министерства рыбного хозяйства СССР, Министерством здравоохранения СССР.


1. Общая часть. 1

2. Сточные воды системы охлаждения. 3

3. Сточные воды систем гидрозолошлакоудаления (ГЗУ) 4

4. Обмывочные воды регенеративных воздухоподогревателей и конвективных поверхностей нагрева котлоагрегатов, работающих на мазуте. 5

5. Сбросные воды химической промывки и консервации оборудования. 7

6. Сбросные воды водоподготовок и конденсатоочисток. 11

8. Сточные воды, загрязненные нефтепродуктами. 12

9. Сточные воды от гидравлической уборки помещений тракта топливоподачи. 15

10. Дождевые воды с территории электростанции. 16

Приложение. Расчет величины продувки системы ГЗУ.. 16

1 . Общая часть

1.1. «Руководство» распространяется на проектирование сооружений, предназначенных для обработки и очистки образующихся в производственных процессах тепловых электростанций сточных вод:


загрязненных нефтепродуктами;

от гидравлической уборки помещений тракта топливоподачи;

дождевых вод с территорий электростанций.

Проектирование сооружений для отведения и очистки бытовых сточных вод от тепловых электростанций и жилых поселков производится в соответствии со СНиП II-32-74 «Канализация. Наружные сети и сооружения».


1.2. При проектировании производственной канализации и сооружений для обработки и очистки сточных вод необходимо рассматривать:

возможность уменьшения количества загрязненных производственных сточных вод за счет применения в технологическом процессе тепловой электрической станции совершенного оборудования и рациональных схемных решений;

применение частично или полностью оборотных систем водоснабжения, повторного использования отработанных в одном технологическом процессе вод на других установках;

исключение сброса в водоемы незагрязненных сточных вод с использованием их для восполнения потерь в оборотных системах водоснабжения;

возможность и целесообразность получения и использования на собственные нужды ТЭС или нужды народного хозяйства ценных веществ, содержащихся в производственных сточных водах;


возможность предельного сокращения или полного исключения сброса сточных вод в водоемы, использование на собственные нужды ТЭС отработанных сточных вод;

возможность использования существующих, проектируемых очистных сооружений соседних промышленных предприятий и населенных пунктов или строительства общих сооружений с пропорциональным долевым участием.

1.3. Выбор метода и схемы обработки производственных сточных вод производится в зависимости от конкретных условий проектируемой электростанции: мощности и устанавливаемого оборудования, режима работы, вида топлива, способа золошлакоудаления, системы охлаждения, схемы водоподготовки, местных климатических, гидрогеологических и прочих факторов, с соответствующими технико-экономическими обоснованиями.

1.4. Сооружения по обработке и очистке производственных сточных вод ТЭС, как правило, надлежит компоновать в одном блоке, а также рассматривать возможность кооперации их с технологической водоподготовкой.

1.5. При проектировании сооружений по обработке и очистке производственных сточных вод надлежит руководствоваться следующими нормативными документами:


«Дополнительный перечень предельно допустимых концентраций вредных веществ в воде водоемов санитарно-бытового водопользования» - № 1194, 1974 г.

«Методические указания для органов Государственного санитарного надзора по применению «Правил охраны поверхностных вод от загрязнения сточными водами».

СНиП II-32-74 «Канализация. Наружные сети и сооружения», 1975 г.

СН-173-61 «Указания по проектированию наружной канализации промышленных предприятий». Часть 1, 1961 г.

СНиП II-31-74 «Водоснабжение. Наружные сети и сооружения», 1975 г.

1.6. Сброс сточных вод в водоемы и водотоки должен проектироваться с соблюдением «Правил охраны поверхностей вод от загрязнения сточными водами» и в установленном порядке согласовываться с органами по регулированию использования и охране вод, Государственного санитарного надзора, по охране рыбных запасов и регулированию рыбоводства и другими заинтересованными органами.

2 . Сточные воды сист емы охлаждения

2.1. Сточные воды системы охлаждения, сбрасываемые после конденсаторов турбин, газоохладителей, воздухоохладителей, маслоохладителей и других теплообменных аппаратов, где воды источника только нагреваются, но не загрязняются механическими или химическими примесями, не требуют очистки.

2.2. Сброс нагретой на электростанции воды в водоемы и водотоки питьевого, культурно-бытового и рыбохозяйственного водопользования осуществляется на основании общих требований «Правил охраны поверхностных вод от загрязнения сточными водами», 1975 г.

Примечание . Расчетные обоснования следует выполнять исходя из следующего. Среднемесячная температура воды в расчетном створе водоема хозяйственно-питьевого и культурно-бытового водопользования летом после сброса нагретой воды не должна повышаться более чем на 3 °С по сравнению с естественной среднемесячной температурой воды на поверхности водоема или водотока для наиболее жаркого месяца года 10-процентной обеспеченности. Для рыбохозяйственных водоемов температура воды в расчетном створе летом не должна повышаться более чем на 5 °C по сравнению с естественной в месте водовыпуска. Среднемесячная температура воды наиболее жаркого месяца в расчетном створе рыбохозяйственных водоемов не должна превышать 28 °C в жаркий год 10-процентной обеспеченности, а для водоемов с холодноводными рыбами (лососевыми и сиговыми) не должна превышать 20 °С.

Температура воды в расчетном створе рыбохозяйственных водоемов зимой не должна превышать 8 °C, а в местах нерестилищ налима 2 °С.

2.3. Для обеспечения требуемого уровня температур воды в водоемах питьевого, культурно-бытового и рыбохозяйственного водопользования при прямоточных и оборотных с водохранилищами системах охлаждения рекомендуется применять:

глубинные водозаборы из стратифицированных водоемов и поверхностные водовыпуски, что позволяет снизить температуру забираемой и соответственно сбросной воды по сравнению с поверхностной температурой водоема;

брызгальные установки над акваторией отводящих каналов или водоема для предварительного охлаждения и аэрации воды перед сбросом в водоем общего пользования;

увеличенную кратность охлаждения пара в зимний период;

эжектирующие водовыпуски, обеспечивающие в районе водосброса 1,5 - 3,0-кратное перемешивание сбросной воды с водой водоема при соответствующих гидрологических, геоморфологических и экономических условиях;

ледотермические установки при соответствующих климатических условиях, когда экономические обоснования подтверждают целесообразность их применения.

2.4. При использовании в качестве водоемов-охладителей наливных водохранилищ, озер и водоемов, не имеющих хозяйственного или культурно-бытового значения, термический режим определяется оптимальными условиями эксплуатации электростанции. В этих случаях в соответствии с «Основами водного законодательства Союза ССР и союзных республик» оформляется право электростанции на обособленное пользование водоемом.

2.5. Для обеспечения максимального, технически возможного вакуума в конденсаторах турбин и предотвращения загрязнения теплообменных поверхностей в прямоточных и оборотных с водохранилищами системах охлаждения следует применять механическую очистку воды.

При применении сетчатых фильтров размер ячеек сетки не должен превышать 2?2 мм.

Скорости воды в трубках теплообменников не должны быть ниже 1,0 м/с.

Предотвращение слизистых (в том числе биологических) отложений на трубах конденсаторов рекомендуется осуществлять непрерывной очисткой резиновыми шариками или периодическим хлорированием.

В оборотных системах охлаждения с градирнями и брызгальными бассейнами в качестве мероприятий по предотвращению накипеобразования на трубках конденсаторов рекомендуется применять продувку, подкисление, фосфатирование, совместное подкисление и фосфатирование воды, а также по мере освоения - безреагентные способы обработки воды (магнитную, ультразвуковую и т.п.).

2.6. Воды продувки оборотных систем охлаждения с градирнями и брызгальными бассейнами следует максимально использовать для питания водоподготовки, подпитки системы ГЗУ, полива территории орошения сельскохозяйственных угодий и для других внутристанционных и хозяйственных нужд. Избыточные продувочные воды сбрасываются в водные объекты с концентрациями загрязняющих веществ в пределах, допустимых «Правилами охраны поверхностных вод от загрязнения сточными водами».

2.7. Химический состав продувочных вод оборотных систем охлаждения рекомендуется определять по «Методике составления гидрохимических прогнозов с учетом накипеобразующих свойств охлаждающей воды тепловых электростанций», разработанной трестом ОРГРЭС в 1975 г.

3 . Сточные воды систем гидрозолошлакоудаления (ГЗУ)

3.1. Водоснабжение систем ГЗУ, как правило, проектируется по оборотной схеме, с повторным использованием воды для гидротранспорта золы и шлака (оборотная система ГЗУ). Водоснабжение систем ГЗУ по прямоточной схеме, а также частичный сброс воды из систем ГЗУ в водные объекты (продувка с целью регулирования солевого состава воды в системе ГЗУ) могут применяться только в исключительных случаях и по согласованию условий и времени сброса с органами Государственного санитарного надзора, по регулированию использования и охране вод, по охране рыбных запасов и регулированию рыбоводства.

3.2. При проектировании оборотного ГЗУ составляется водный баланс, выявляющий дефицит или избыток воды в системе.

Водный баланс системы ГЗУ, как правило, должен проектироваться дефицитным или нулевым.

3.3. Необходимость продувки оборотной системы ГЗУ определяется расчетным путем (см. приложение).

Кроме прямого сброса продувочной воды в водные объекты при соблюдении условий, оговоренных в п. 3.1, следует рассматривать следующие направления отведения продувочной воды:

безвозвратное использование продувочной воды в технологических циклах электростанции;

выпаривание продувочной воды при помощи специальных устройств;

другие, определяемые конкретными условиями данной электростанции.

3.4. При дефицитном водном балансе пополнение системы проектируется загрязненными производственными сточными водами ТЭС. Допустимость подачи в систему ГЗУ засоленных сточных вод определяется расчетом.

3.5. С целью сведения водного баланса к дефицитному или нулевому следует предусматривать:

перехват и отведение в обход золоотвала поверхностного стока с его водосборной площади;

применение устройств для увеличения потерь воды на испарение в золоотвале (рассредоточенный выпуск пульпы на золошлаковые пляжи, орошение пляжей осветленной водой и др.);

использование осветленной воды на отжим и уплотнение в подшипниках багерных и шламовых насосов, промывку золошлакопроводов, поддержание уровня воды во всасывающих приямках багерных, шламовых насосов и для других целей. Использование для этих целей свежей технической воды запрещается.

3.6. При оборотной системе ГЗУ орошение мокрых золоуловителей должно осуществляться осветленной водой. Для орошения пригодна вода, имеющая рН? 10,5 и содержащая менее 36 мг-экв/л сульфатов. Если осветленная вода не соответствует этим параметрам, в системе предусматривается устройство для обработки осветленной воды, подаваемой на орошение мокрых золоуловителей.

Необходимо рассматривать целесообразность использования на орошение скрубберов загрязненных производственных сточных вод ТЭС. Для этого можно использовать загрязненные нефтепродуктами сточные воды без очистки, а также химически загрязненные стоки после их предварительной обработки.

Применение мокрых золоуловителей для зол с высокой щелочностью необходимо обосновывать, проводя технико-экономическое сравнение с сухими золоуловителями, при этом должны учитываться затраты на обработку осветленной воды, требуемые для ее использования на орошение мокрых золоуловителей, а при необходимости продувки учитываются затраты, связанные с ней.

3.7. При проектировании золошлакоотвалов должна быть предусмотрена защита поверхностных и подземных вод от загрязнения; соответствующие водоохранные мероприятия необходимо согласовывать в установленном порядке с органами Министерства геологии и органами по регулированию использования и охране вод.

4 . Обмывочные воды регенеративных воздухоподогревателей и конвективных поверхностей нагрева котлоагрегатов, работающих на мазуте

4.1. Необходимо предусматривать нейтрализацию и обезвреживание токсичных веществ, содержащихся в сточных водах от обмывки РВП и конвективных поверхностей нагрева котлоагрегатов, работающих на мазуте. Сброс этой группы вод в водоемы без нейтрализации и обезвреживания токсичных веществ недопустим.

4.2. При проектировании узла нейтрализации и обезвреживания этих вод надлежит руководствоваться следующими данными:

а) для обмывки РВП принимать:

количество обмывочной воды 5 м 3 на 1 м 2 сечения ротора;

продолжительность обмывки - 1 ч;

периодичность обмывки - один раз в 30 суток.

Общее количество обмывочных вод для РВП различного диаметра принимать по табл. 1.

Таблица 1

б) для обмывки конвективных поверхностей нагрева котлоагрегата принимать:

периодичность обмывки один раз в год перед ремонтом;

продолжительность обмывки - 2 ч;

расход воды на обмывку котла паропроизводительностью 320 т/ч и более - 300 м 3 .

в) для обмывки пиковых котлов принимать:

среднюю периодичность обмывки - один раз в 15 суток работы;

продолжительность обмывки - 30 мин.

Расход воды на обмывку котлов различного типа принимать:

Для пиковых котлов, оборудованных дробеструйной очисткой поверхностей нагрева, периодичность обмывок принимать один раз в год.

4.3. Расчетный состав обмывочных вод как РВП, так и мазутных котлоагрегатов, принимать по табл. 2.

Таблица 2

4.4. При проектировании узла нейтрализации и обезвреживания обмывочных вод необходимо, как правило, предусматривать осаждение ванадийсодержащего шлама, удовлетворяющего требованиям металлургических заводов. Этому условию соответствует нейтрализация обмывочных вод в две стадии:

первая - обработка вод едким натром до величины рН, равной 4,5 - 5, для осаждения окислов ванадия и отделение ванадийсодержащего шлама на фильтр-прессах типа ФПАКМ;

вторая - обработка осветленной после первой стадии воды известью до величины рН равной 9,5 - 10 - для осаждения окислов железа, никеля, меди, а также сульфата кальция.

4.5. Расчетный расход реагентов для нейтрализации обмывочных вод принимать:

едкого натра в первой стадии - 6,0 кг/м 3 в пересчете на NaOH;

извести во второй стадии - 5,6 кг/м 3 в пересчете на CaO.

4.6. Объем жидкого шлама в баке-нейтрализаторе после 5 - 6-часового отстаивания осадка в первой стадии принимать равным 20 % от первоначального объема обмывочной воды, а содержание твердого вещества в нем - равным 5,5 %.

Объем жидкого шлама в баке-нейтрализаторе после 7 - 8 часового отстаивания осадка во второй стадии принимать равным 30 % от первоначального объема осветленной воды в первой стадии, а содержание твердого вещества в нем - равным 9 %. При нейтрализации вод технической известью содержание твердого вещества в осадке принимать с учетом балласта в известковом молоке.

4.7. Жидкий шлам после первой стадии направлять в специальный бак сбора шлама.

Бак оборудуется трубопроводом рециркуляции для получения шлама равномерной концентрации и подачи его на фильтр-пресс. Полученный после фильтрования шлам пакуется в мешки, складируется и направляется для переработки на металлургические заводы.

Временно, при отсутствии фильтр-прессов, предусматривается емкость с нефильтруемым основанием из расчета складирования шлама от первой стадии нейтрализации в течение 5 лет.

4.8. Нейтрализацию обмывочных вод в две стадии следует предусматривать в различных баках-нейтрализаторах с целью получения более чистого ванадийсодержащего шлама.

4.9. Жидкий шлам после второй стадии нейтрализации необходимо направлять на шламоотвал с устройством противофильтрационного покрытия, емкость которого рассчитывается на 10 лет работы ТЭС полной проектной мощности.

4.10. Осветленные воды после второй стадии нейтрализации направляются на повторное иcпользование для обмывки РВП и конвективных поверхностей нагрева котлоагрегатов. Продувка этой системы осуществляется водой, транспортирующей шлам на шламоотвал. Вода после отстаивания подается в поток засоленных сточных вод согласно пункту 6.7.

4.11. Средний состав нейтрализованных обмывочных вод принимать:

рН - от 9,5 до 10; содержание СаSО 4 - до 2 г/л.

4.12. Средний состав шлама после нейтрализации следует принимать по табл. 3.

Таблица 3

4.13. Каждый бак-нейтрализатор должен вмещать обмывочные воды от обмывки одного РВП и реагенты для их нейтрализации Число баков-нейтрализаторов на ТЭС следует принимать не менее двух и не более четырех в зависимости от конкретных условий.

4.14. При обмывке пиковых котлов на пылеугольной ТЭС допускается нейтрализация обмывочных вод известью. Нейтрализованную воду вместе со шламом возможно направлять в систему гидрозолоудаления при рН осветленной воды не ниже 7. При рН осветленной воды ниже 7 необходимо предусматривать отдельный шламонакопитель.

4.15. Расчетный расход извести при нейтрализации обмывочных вод по пункту 4.14 принимать 7 кг/м 3 в пересчете на СаО.

4.16. Должна осуществляться антикоррозионная защита емкостей для сбора и нейтрализации обмывочных вод, а также трубопроводов подачи обмывочных вод в узел нейтрализации.

Емкости оборудуются насосами рециркуляции, разводкой воздуха и подводом реагентов.

Насосы для перекачки и рециркуляции нейтрализуемых вод надлежит принимать в кислотостойком исполнении.

5 . Сбросные воды химической промывки и консервации оборудования

5.1. Проектирование устройств для обработки сбросных вод надлежит производить исходя из применяемых методов предпусковых и эксплуатационных химических очисток:

раствором ингибированной соляной кислоты;

раствором серной или соляной кислоты с гидразином;

раствором фталевого ангидрида;

раствором дикарбоновых кислот;

раствором низкомолекулярных кислот (концентрат НМК);

раствором моноаммоний цитрата;

раствором на основе комплексонов.

5.2. Запрещается применять для промывки и консервации теплоэнергетического оборудования реагенты, для которых не установлены предельно допустимые концентрации (ПДК) в водоемах, а также реагенты, которые не могут быть обезврежены или переведены в вещества, для которых значения ПДК установлены.

5.3. Для защиты оборудования от стояночной коррозии применяются «мокрые» методы консервации, заключающиеся в заполнении котлоагрегата растворами гидразина или ингибиторов атмосферной коррозии, или смесью аммиака и нитрита натрия. Периодичность проведения консервации определяется режимом работы оборудования. Для нейтрализации и обезвреживания отработавших консервирующих растворов необходимо применять установки по нейтрализации и обезвреживанию сбросных вод химических очисток.

5.4. Для определения количества сбросных вод исходить из следующих возможных операций по проведению химических очисток:

а) водной промывки технической водой;

б) обезжиривания внутренних поверхностей щелочью или ОП-7 (ОП-10) по замкнутому контуру;

в) вытеснения раствора технической водой с последующей заменой ее на обессоленную;

г) кислотной промывки по замкнутому контуру;

д) вытеснения раствора и водной промывки технической водой (с добавлением щелочных реагентов) с последующей заменой ее на обессоленную;

е) пассивации очищенных поверхностей по замкнутому контуру;

ж) дренирования или вытеснения пассивирующего раствора обессоленной водой.

Примечания .

1) При проведении обезжиривания по пункту «б» раствором ОП-7 (ОП-10) прямоточных котлов эта операция совмещается с кислотной промывкой без промежуточного вытеснения раствора.

2) Для дренируемых котлов по пункту «ж» производится дренирование пассивирующего раствора, а водная промывка производится перед пуском котла.

3) При проведении двухэтапных промывок операции по пунктам «г» и «д» повторяются после операции по пункту «д».

4) При проведении эксплуатационных химических очисток поверхностей нагрева прямоточных котлов растворами на основе комплексонов сбросные воды образуются лишь в операциях по пунктам «г» и «д» без применения отмывок технической водой.

5.5. Сбор и нейтрализацию отработанных промывочных растворов предусматривать в баках-нейтрализаторах, объем которых должен быть рассчитан на прием кислых и щелочных растворов с учетом трехкратного разбавления их водой при вытеснении из контура. Кислые и щелочные промывочные растворы, собранные в баках-нейтрализаторах, следует использовать для взаимной нейтрализации.

Емкость баков-нейтрализаторов принимать не менее семикратного объема промываемого контура при одноэтапной промывке и десятикратного объема при двухэтапной промывке, руководствуясь данными табл. 4.

5.6. Для сбора стоков от водных промывок оборудования, а также слабозагрязненных стоков (РН = 6 - 8) от вытеснения кислых и щелочных растворов необходимо предусматривать открытую емкость.

Емкость должна выполняться из двух секций, в зависимости от местных условий в виде обвалования или выемки без устройства водонепроницаемого основания.

В одну секцию, меньшую по объему и служащую для отстаивания продуктов коррозии и механических загрязнений, направлять три объема контура при первоначальной водной промывке оборудования.

Осветленная вода должна перепускаться во вторую секцию-усреднитель. В эту же секцию должны отводиться стоки от водных отмывок оборудования в количестве 12 объемов контура при вытеснении кислых и щелочных растворов.

Емкость усреднителя надлежит выбирать в зависимости от типа котлоагрегата и объема промываемого контура.

Ориентировочное количество стоков от предпусковых химических очисток оборудования приведено в табл. 4.

Таблица 4

Паропроизводительность, т/ч; тип котла

Схема очистки

объем промываемого контура, м 3

Объем сбрасываемых стоков, м 3

в бак-нейтрализатор

в емкостъ-усреднителъ

420; барабанный

Одноконтурная

640; барабанный

Двухконтурная

1-й контур

2-й контур

950; прямоточный

Одноконтурная в два этапа

950; прямоточный

Двухконтурная

1-й контур

2-й контур

1600; прямоточный

Двухконтурная

1-й контур

2-й контур

2650; прямоточный

Двухконтурная в два этапа:

1-й контур

2-й контур

5.7. Вода из емкости-усреднителя должна использоваться для подпитки оборотных систем водоснабжения электростанций. Для ТЭС с прямоточными системами водоснабжения и при невозможности использования этих вод на собственные нужды выпуск их производить в водоотводящий канал. При этом проверяется целесообразность сооружения емкости-усреднителя.

5.8. Состав сточных вод в мг/л после взаимной нейтрализации в баках кислых и щелочных растворов для применяемых методов химической очистки принимать по табл. 5.

Таблица 5

Показатели

Методы химических очисток

солянокислотный

комплексонный

моноаммоний цитратный

Фталевокислотный

концентратом НМК

дикарбоновыми кислотами

гидразинокислоный

Сульфаты

ПБ-5; В-1; В-2

Формальдегид

Аммонийные соединения

Гидразин

Сухой остаток

ХПК мг/л О 2

БПК мг/л О 2

* Органические вещества присутствуют в виде солей органических кислот с железом, аммонием, натрием.

5.9. Для окончательной нейтрализации, осаждения ионов тяжелых металлов (железа, меди, цинка), разложения гидразина, аммонийных соединений и других операций необходим бак с коническим днищем емкостью до 500 м 3 . Бак оборудуется насосами рециркуляции, разводкой воздуха и подводом реагентов.

Осаждение железа предусматривать путем подщелачивания известью:

до рН = 10 - при солянокислотном и гидразинокислотном методах;

до рН = 11 - при моноаммонийцитратном методе и промывках низкомолекулярными и дикарбоновыми кислотами и фталевокислотном методе;

до рН = 12 - при наличии в растворах соединений ЭДТК.

Отстаивание сточных вод для уплотнения осадка и осветления воды предусматривать в течение не менее двух суток.

При эксплуатационных промывках для осаждения меди и цинка из моноаммонийцитратного и комплексонатного растворов следует применять сульфид натрия, который необходимо добавлять в раствор после отделения шлама гидроокиси железа.

Осадок сульфидов меди и цинка уплотнять отстаиванием не менее суток.

Шлам, состоящий из гидроокисей и сульфидов металлов, направлять на золошлакоотвалы и шламоотвалы предочисток.

Осветленную воду необходимо подкислять до нейтральной с рН = 6,5 - 8,5 и отводить совместно с другими засоленными стоками электростанции согласно пункту 6.7.

Следует рассматривать возможность подачи этих вод в систему бытовой канализации, имеющей в своем составе сооружения с полной биологической очисткой, на которых будет происходить доочистка их от органических соединений.

5.10. На электростанциях, работающих на газомазутном топливе, дополнительную обработку и обезвреживание нейтрализованных вод химической очистки допускается проводить с использованием установки нейтрализации обмывочных вод РВП и конвективных поверхностей нагрева. Однако смешивание вод химической очистки и обмывочных вод РВП недопустимо.

5.11. Баки-нейтрализаторы и баки для обезвреживания сточных вод, а также трубопроводы в пределах этих узлов следует защищать антикоррозионными покрытиями, рассчитанными на прием стоков температурой до 100 °С. Насосы для перекачки и рециркуляции сточных вод химической очистки принимать в кислотостойком исполнении.

5.12. Качество осветленной воды после обезвреживания сточных вод должно быть в соответствии с применяемым методом химической промывки.

Средний состав осветленных вод после обезвреживания сточных вод в мг/л принимать по табл. 6.

Таблица 6

Показатели

Методы химических промывок

солянокислотный

комплексонный

моноаммонийцитратный

фталевокислотный

концентратом НМК

дикарбоновыми кислотами

гидразинокислотный

Сульфаты

ПБ-5; В-1; В-2

Формальдегид

Аммонийные соединения

Сухой остаток

ХПК мг/л О 2

БПК мг/л О 2

5.13. Количество шлама в процентах от общего объема раствора в баке обезвреживания сточных вод принимать, рассчитывая по формуле

где: ? - количество осадка в % от общего объема раствора;

М - величина сухого остатка раствора, г/л;

Т - время отстаивания, сутки.

6 . Сбросные воды водоподготовок и конденсатоочисток

6.1. Количественные и качественные показатели сбросных вод определяются в проекте технологической части водоочисток и конденсатоочисток.

6.2. Продувочная вода осветлителей может отводиться:

б) на нейтрализацию кислых стоков (при рН продувочной воды выше 9);

в) непосредственно на шламоотвал при расположении последнего вблизи ТЭС с возвратом осветленной воды из шламоотвала в баки повторного использования промывочных вод механических фильтров;

г) в отстойники периодического действия, из которых осветленная вода возвращается в баки повторного использования промывочных вод механических фильтров, а шлам отводится нейтрализованными регенерационными водами ионитовых фильтров на шламоотвал;

д) в специальные устройства для обезвоживания шлама с возвратом осветленной воды в баки повторного использования промывочных вод механических фильтров.

Возврат осветленной воды по пунктам «в», «г» и «д» принимать в количестве 75 % от расхода продувочной воды осветлителей.

6.3. Отходы известкового хозяйства могут сбрасываться:

а) в систему гидрозолоудаления;

б) на шламоотвал.

6.4. Расчетный объем шламоотвала принимается на 10 лет работы ТЭС с проектной мощностью. Влажность шлама на шламоотвале принимать равной 80 - 90 %.

6.5. При наличии осветлителей вода от промывки механических фильтров химводоочистки собирается в специальную емкость (бак регенерации) и без отстаивания равномерно в течение суток перекачивается в линию исходной воды на водоочистках с коагуляцией (без известкования) или в нижнюю часть каждого осветлителя для известкования воды.

Должно быть обеспечено отсутствие в возвращаемой воде посторонних загрязнений, подсоса воздуха при перекачке и постоянство расхода.

6.6. При отсутствии осветлителей для коагуляции воды (прямоточные водоочистки) вода от промывки механических фильтров может направляться:

а) в систему гидрозолоудаления;

б) в систему сбора регенерационных вод ионитовых фильтров;

в) в специальный отстойник с возвратом осветленной воды в исходную и перекачкой шлама на шламоотвал. Целесообразность этого должна быть подтверждена путем сравнения с вариантом установки осветлителей вместо прямоточной коагуляции.

6.7. Регенерационные воды ионитовых фильтров, продувочные воды испарителей и паропреобразователей в зависимости от местных условий могут направляться:

а) в систему гидрозолоудаления с использованием их на нужды гидротранспорта золы и шлака;

б) в водоемы, с соблюдением санитарно-гигиенических и рыбохозяйственных требований к качеству воды водоема в расчетном створе.

При прямоточной системе охлаждения ТЭС, для обеспечения лучших условий смешения регенерационных вод в водоеме, сброс их осуществлять в отводящие каналы;

в) в пруды-испарители при благоприятных климатических условиях;

г) на выпарные установки при технико-экономическом обосновании.

Вопрос о необходимой нейтрализации кислых и щелочных регенерационных вод перед их сбросом должен быть решен в каждом отдельном случае с учетом местных условий.

Нейтрализация кислых и щелочных стоков производится в баках, имеющих антикоррозионное покрытие, оборудованных подводом воздуха и реагентов.

Емкость баков должна обеспечивать прием регенерационных вод от блока фильтров или суточного расхода при параллельной схеме, а также реагентов для их донейтрализации.

С целью уменьшения объема сбрасываемых вод в каждом конкретном случае должен быть проработан вопрос об использовании части отмывочных вод ионитовых фильтров (последней части) в системе технического водоснабжения или химводоочистки.

6.8. Промывочные воды электромагнитных фильтров, содержащих повышенные концентрации окислов железа во взвешенном состоянии, направлять на золо- или шламоотвалы.

6.9. Выбор способов сброса вод следует производить на основе технико-экономических расчетов с учетом местных условий и нормативов по охране водоисточников от загрязнений.

7 . Воды, содержащие «Иввиоль» и ОМТИ

7.1. Ввиду отсутствия методов очистки сточных вод от «Иввиоля» и ОМТИ следует предусматривать устройства для сбора и подачи этих вод и загрязненных осадков в мазутные баки с последующим сжиганием в котлах.

8 . Сточные воды, загрязненные нефтепродуктами

8.1. Источниками загрязнения сточных вод маслами могут являться:

в главном корпусе: маслосистемы турбин, генераторов, возбудителей, питательных насосов, мельниц, дымососов, вентиляторов, маслоочистные установки, сливы уплотнения сальников насосов, проливы масла при ремонте маслосистем и оборудования, дренажные воды с полов;

во вспомогательных помещениях электростанций: сливы уплотнения сальников насосов, компрессоров, вентиляторов, дренажи полов помещений, где могут быть утечки и проливы масла;

на площадках установки трансформаторов, масляных выключателей: аварийные маслостоки и дренажи каналов и тоннелей с маслонаполненными кабелями;

на маслохозяйстве: дренажи полов маслонасосной, дождевые и талые воды с площади открытого склада масла;

гаражи и места стоянок автотранспорта, тракторов, бульдозеров, строительных машин и прочих транспортных средств и механизмов.

8.2. Источниками загрязнения сточных вод мазутом могут являться:

сливы от уплотнения сальников мазутных насосов и от пробоотборников контроля конденсата;

дренажные воды полов мазутонасосной, каналов мазутопроводов;

конденсат от подогревателей мазута и сливных лотков;

дождевые и талые воды от сливного устройства, обвалованной территории склада мазута и участков территории мазутного хозяйства, прилегающих к сливному устройству и мазутонасосной, загрязняемых в процессе эксплуатации;

грунтовые воды, перехватываемые дренажной системой мазутного хозяйства, из-за просачивания мазута в грунт через неплотности в емкости хранения и в сливных лотках;

промывочные воды фильтров конденсатоочистки мазутного хозяйства.

8.3. При проектировании необходимо предусматривать мероприятия по уменьшению загрязнения сточных вод нефтепродуктами, а также их количества путем:

разделения потоков чистых и загрязненных нефтепродуктами сточных вод от механизмов и установок, вращающиеся узлы которых охлаждаются водой. Незагрязняемая в процессе эксплуатации охлаждающая вода должна иметь самостоятельные отводные трубопроводы и возвращаться на повторное использование;

устройства защитных кожухов на масло- и мазутопроводах с дренажными трубопроводами для отвода масла и мазута при протечках, прорыве прокладок фланцевых соединений или разуплотнении сальников арматуры;

устройства обортовки и поддонов в местах установки маслонасосов, маслобаков;

установки баков сбора масла из поддонов и от защитных кожухов и баков сбора мазута от кожухов мазутопроводов;

обортовки площадок ремонта оборудования и ревизии трансформаторов с местным сбором и удалением масла;

применения специальных приспособлений, исключающих разбрызгивание и пролив мазута при сливе из цистерн;

устройства на сливном устройстве обортовки на расстоянии 5 м от оси железнодорожного пути и поперечных уклонов в сторону сливных лотков;

исключения попадания мазута в конденсат подогревателей, контроля качества конденсата в каждой группе подогревателей с установкой пробоотборников, сигнализаторов загрязнения мазутом конденсата или иных устройств;

подачи загрязненных мазутом стоков из дренажных приямков мазутонасосной в емкости с мазутом;

подачи обводненного мазута для сжигания в котлах без отдаления содержащейся в нем воды;

предотвращения фильтрации мазута в грунт из резервуаров и сливных лотков;

обортовки площадок ремонта оборудования, а также участков территории мазутного хозяйства, загрязняемых мазутом в процессе эксплуатации.

8.4. Для сбора и последующего удаления сточных вод, загрязненных нефтепродуктами, необходимо предусматривать самостоятельную систему, которой должны отводиться: сливы от картеров насосов и вращающихся механизмов, не имеющих раздельных сливов масла и воды; дождевые и талые воды от открытых складов масла, мазута, дизельного топлива; от участков территории, загрязняемых в процессе эксплуатации; от сети аварийных маслостоков; дренажные воды полов главного корпуса, компрессорной, мастерских и прочих помещений, полы которых могут быть загрязнены нефтепродуктами; конденсат, при содержании в нем мазута более 10 мг/л и отмывочные воды фильтров конденсатоочистки.

8.5. Количество сточных вод, загрязненных маслами, принимать в размере:

постоянный сброс от механизмов и установок главного корпуса - 5 м 3 /ч на один блок (турбина-котел);

постоянный сброс от всех вспомогательных помещений (компрессорные, мастерские, насосные станции и т.п.) - 5 м 3 /ч;

периодический сброс от смыва полов помещений - 5 м 3 /ч.

Периодический сброс дождевых и талых вод с территории открытого склада масла, открытой установки трансформаторов, масляных выключателей и пр. определяется в конкретных условиях в зависимости от площади и климатических факторов.

8.6. Количество сточных вод, загрязненных мазутом, принимать:

постоянный расход в зависимости от паропроизводительности установленных котлов (табл. 7);

Таблица 7

периодические расходы: загрязненный мазутом более 10 мг/л конденсат, дождевые и талые воды с обвалованной территории склада топлива и с участков территории мазутного хозяйства, загрязняемых в процессе эксплуатации, отмывочные воды фильтров конденсатоочистки, отводимые, как правило, через бак-усреднитель.

8.7. Расчетный расход сточных вод, загрязненных нефтепродуктами, определяется суммированием постоянных стоков и наибольшего периодического.

При определении количества замазученного конденсата за расчетный принимается расход от группы подогревателей наибольшей производительности.

8.8. Усредненное содержание нефтепродуктов в общем потоке сточных вод с учетом мероприятий, изложенных в пункте 8.3, принимать равным 100 мг/л.

8.9. На электростанциях, работающих на твердом топливе, загрязненные нефтепродуктами сточные воды, как правило, без очистки должны повторно использоваться на нужды гидрозолошлакоудаления: на смыв и гидротранспорт золы и шлака, на орошение мокрых золоуловителей и пр.

Необходимость очистки сточных вод от нефтепродуктов для этих электростанций должна быть обоснована.

8.10. На электростанциях, работающих на жидком топливе и газе, должна предусматриваться очистка сточных вод, загрязненных нефтепродуктами. Необходимо рассматривать возможность и целесообразность использования действующих или проектируемых очистных сооружений соседних промышленных предприятий или населенных мест.

Допускается подача загрязненных нефтепродуктами сточных вод в систему хозяйственно-фекальной канализации, имеющей в своем составе сооружения полной биологической очистки. Содержание нефтепродуктов в общем потоке сточных вод, поступающих на очистку, не должно превышать 25 мг/л.

8.11. Очистку сточных вод от нефтепродуктов проектировать по схеме: приемный резервуар, нефтеловушка, механические фильтры.

Установка фильтров с активированным углем после механических фильтров должна быть обоснована.

Примечание . Допускается по условиям компоновки очистных сооружений проектировать вместо нефтеловушки напорную флотационную установку.

8.12. Емкость приемного резервуара надлежит выбирать из расчета двухчасового притока расчетного расхода сточных вод и промывочных вод фильтров очистных сооружений.

Приемный резервуар необходимо оборудовать устройствами для улавливания плавающих нефтепродуктов и осадка, их отведения, а также для равномерной подачи воды на последующую ступень очистки.

Остаточное содержание нефтепродуктов после приемных резервуаров принимать 80 - 70 мг/л.

8.13. Проектирование нефтеловушек (напорных флотационных установок) выполнять в соответствии с СНиП II-32-74 «Канализация. Наружные сети и сооружения» и СН 173-61 «Указания по проектированию наружной канализации промышленных предприятий» Часть 1.

Остаточное содержание нефтепродуктов после нефтеловушек (флотационных установок) принимать 30 - 20 мг/л.

8.14. Уловленные в приемных емкостях, нефтеловушках (флотаторах) нефтепродукты надлежит подавать в расходные емкости мазутного хозяйства электростанции для последующего сжигания в котлах. Осадок от указанных сооружений складируется на шламоотвале с водонепроницаемым основанием, с последующим (после подсушки) вывозом в места, согласованные с органами Государственной санитарной инспекции. Емкость шламоотвала принимать из расчета накапливания в нем осадка в течение 5 лет.

8.15. Механические фильтры проектировать с двухслойной загрузкой кварцевым песком и дробленным антрацитом (коксом).

Скорость фильтрации принимать 7 м/ч.

Остаточное содержание нефтепродуктов после механических фильтров принимать 10 - 5 мг/л.

8.16. Скорость фильтрации для фильтров с активированным углем принимать 7 м/ч. Конечное содержание нефтепродуктов в очищенных водах после угольных фильтров - до 1 мг/л.

8.17. Промывку механических и угольных фильтров предусматривать горячей водой с температурой 80 - 90 °С.

Расчетная скорость промывки - 15 м/ч.

8.18. Вода, прошедшая очистку, должна использоваться повторно на технологические нужды электростанции: на подпитку оборотной системы технического водоснабжения или на питание водоподготовки.

При использовании очищенных от нефтепродуктов вод в системе оборотного технического водоснабжения, а также для питания водоподготовок, имеющих предочистку с известкованием, фильтры с активированным углем в составе очистных сооружений не предусматривать.

9 . Сточные воды от гидравлической уборки помещений тракта топливоподачи

9.1. Системы гидравлической уборки помещений тракта топливоподачи должны проектироваться оборотными без сброса загрязненной топливом воды в водоемы.

9.2. Для смыва просыпи, осыпи топлива и пыли в помещениях тракта топливоподачи должна использоваться осветленная вода оборотной системы гидрозолошлакоудаления ТЭС.

9.3. Сброс загрязненной топливом воды от системы гидроуборки должен, как правило, производиться в каналы системы гидрозолоудаления.

9.4. При технико-экономическом обосновании допускается проектировать локальную оборотную систему гидравлической уборки тракта топливоподачи с сооружениями осветления загрязненной воды и возвратом ее на нужды гидроуборки. Восполнение потерь воды из этой оборотной системы осуществлять осветленной водой гидрозолоудаления или технической водой.

10 . Дождевые воды с территории электростанции

10.1. В сеть дождевой канализации электростанций должен быть исключен сброс дождевых и талых вод, а также производственных стоков, содержащих нефтепродукты и химически вредные соединения.

10.2. Участки территории электростанций, которые в процессе эксплуатации могут быть загрязнены нефтепродуктами, должны иметь обортовку, и отвод дождевых и талых вод от них должен проектироваться в систему сточных вод, загрязненных нефтепродуктами.

10.3. Выпуск дождевых вод в водоемы должен проектироваться в соответствии с «Правилами охраны поверхностных вод от загрязнения сточными водами».

Необходимость очистки сточных вод, отводимых дождевой канализацией, определяется в конкретных условиях проектируемой электростанции.

10.4. Необходимо рассматривать возможность и целесообразность использования дождевых и талых вод с территории электростанции на собственные нужды: на подпитку оборотных систем водоснабжения, питание водоподготовок и пр.

10.5. Дождевые и талые воды с кровли главного корпуса, как правило, через сеть внутренних водостоков необходимо отводить в систему технического водоснабжения, с кровли объединенного вспомогательного корпуса - на собственные нужды водоподготовки, приготовление реагентов и пр.

Приложение

Расчет величины продувки системы ГЗУ (методика расчета разработана ВТИ им. Ф.Э. Дзержинского)

Содержание сульфатов в воде, добавляемой в систему ГЗУ, мг-экв/л;

Q доб.в - количество воды, добавляемой в систему ГЗУ, м 3 /ч;

l - основание натуральных логарифмов;

Время пребывания осветленной воды в бассейне золошлакоотвала.

Если величина Q пр, определенная по приведенным уравнениям, окажется менее 0,5 % от расхода воды в системе, от организации продувки можно отказаться.

Очистка мазутсодержащих сточных вод ТЭС

В.И. Аксенов, И.И. Ничкова, Л.И. Ушакова, Н.Э. Вовненко (УрФУ),

В.А. Никулин, С.С. Пецура (ЗАО «Химические системы»)

Нефть и нефтепродукты, попадая в водные источники, наносят им существенный вред. Очистка воды от этих загрязнений сопряжена со значительными техническими трудностями и затратами. Имеются подобные стоки и на ТЭС, где одной из категорий органосодержащих стоков являются сбросные воды мазутных хозяйств. Их количество невелико (от 3 до 10 м 3 /ч), температура выше исходной, возможны залповые попадания мазута. Химический состав практически не меняется. Возможно использование вод после удаления мазута в отстойниках-ловушках в зависимости от эффективности удаления мазута. Остановимся подробнее на этой проблеме. Технически проблема очистки этих видов сточных вод в основном решена; существуют типовые очистные сооружения, широко применяемые на действующих ТЭС. Используется многоступенчатая обработка:

    нефтеловушки различного типа; флотаторы – напорные и безнапорные; фильтрование через кварцевый песок и антрацит; доочистка на сорбционных (загруженных активированным углём) или намывных (вспученный перлит, угольная пыль и их смесь) фильтрах.
В настоящее время отделение нефтепродуктов осуществляется также методом флокулирования, для чего чаще всего используют катионные флокулянты отечественного и зарубежного производства: отечественные – ВПК-402, Флокатан, КФ и др.; зарубежные – Праестолы 611, 650, 655, 853 и др. Иногда для удаления нефтепродуктов можно использовать коагулянты, а также более сложную обработку:
    коагулирование и флокулирование; коагулирование, флокулирование катионным флокулянтом, флокулирование анионным флокулятном (т.е. процесс перефлокуляции).
Степень очистки достигает 95 % и мало зависит от исходной концентрации нефтепродуктов, т.е. для получения остаточной концентрации 0,05 мг/кг (ПДК для рыбохозяйственных водоёмов) на очистку должны поступать сточные воды с концентрацией не более 1 мг/кг, которая практически не встречается в условиях работы ТЭС. При исходной концентрации более 2 мг/кг остаточную концентрацию можно снизить до 0,3-1,0 мг/кг и очищенную воду использовать повторно вместе с исходной водой, особенно при использовании, как уже отмечалось, систем известкования и коагуляции. На основании вышесказанного, была поставлена задача экспериментальной отработки технологии доочистки замазученного стока методом реагентной обработки, как не требующей сложного габаритного оборудования, экономичной и легко встраиваемой в существующую технологическую схему очистки. Для опытов использовался натурный мазутсодержащий сток мазутного хозяйства ТЭС. Всего было предоставлено три пробы по 10 литров с содержанием мазута – 1,91 мг/дм 3 ; 1,28 мг/дм 3 ; 1,4 мг/дм 3 соответственно. Предварительно было проведено несколько серий опытов по подбору реагентов и оптимальных параметров эксперимента. По результатам редварительных опытов была принята следующая методика. В цилиндр наливалось 0,5 литра исходного мазутсодержащего стока, в который дозировались необходимые реагенты:
    коагулянт и щелочь; коагулянт, щелочь и флокулянт (анионный); коагулянт, щелочь, флокулянт (анионный) и флокулянт (катионный).
В качестве коагулянта использовался Аl 2 (SO 4) 3 и FeSO 4, в качестве щелочи NaOH, в качестве катионного флокулянта Праестол 655 и в качестве анионных флокулянтов Аквапол, Flopam AN 905 и Праестол 2540. Концентрации рабочих растворов реагентов:
    коагулянты 1%; флокулянты 0,1%; NaOH 5%.
После добавления (при перемешивании) выбранных реагентов в предварительно отобранных дозах и отстаивании в течение 1 часа были получены результаты, представленные в таблице 1. Из приведенных результатов считаем возможным сформулировать следующие рекомендации: 1. Обработку мазутсодержащих стоков производить коагулянтами Аl 2 (SO 4) 3 или FeSO 4 с подщелачиванием NaOH в дозах, указанных в табл.1 с последующим отстаиванием в течение не менее 1 часа. 2. При повышенном содержании мазута (более 10 мг/л в исходном стоке) следует предусмотреть дополнительную обработку стока флокулянтом Праестол 655 или Праестол 2540 в дозах, указанных в табл.1 с последующим отстаиванием. 3. Дочищенная по приведенной технологии вода может использоваться для подпитки оборотного цикла станции.

Таблица 1

Результаты лабораторных испытаний очистки натурного мазутсодержащего стока

Добавленные реагенты

Количество добавленных на 1000 см 3 стока реагентов, мг

Усредненная концентрация мазута в обработанном стоке, мг/дм 3

Праестол 2540

Праестол 655